
Towards Velocity Map Imaging:

Implementation of a Self-Centering Inverse Abel

Transform Script

Richard James Bentley-Moyse

Supervisor: Duncan Wild

Masters Dissertation submitted as part of the M.Sc degree

in the School of Physics, University of Western Australia

Date of submission: 31/Oct/14

Declaration

This is to certify that:

(i) this dissertation comprises of my own original work,

(ii) due acknowledgement has been made in the text to all other materials used,

(iii) the dissertation is less than 60 pages in length, exclusive of tables, equations,

references, appendices and footnotes.

I authorise the Head of the School of Physics and the Head of the School of

Chemistry to pass a copy of this dissertation to any person judged to have an ac-

ceptable reason for access to the information.

Richard J. Bentley-Moyse

Duncan A. Wild

Supervisor

Acknowledgments

If I have seen further it is by standing on ye sholders of Giants.

Sir Isaac Newton, 1676

To dwell on the past is to forget the future, but the path traversed shapes you, moulds

you and defines you. Not a day goes by that doesn’t end in quiet reflection upon the

triumph of those before me, those who pushed the boundaries and continue to drive me

to always be the better man, scientist and partner. This year, and indeed the year before,

have tested my faith in myself, in my resolve to finish what I’d started and to push past

the illness dogging my every advance.

First and foremost, my thanks go to my research group. I couldn’t have asked for more

patience or understanding; you were the Mystery Incorporated to my Ghost of the Haunted

Lab. Shanee and Kim, our chats will always be the highlight of my procrastination.

Marcus, I will always thank you for introducing me to To Øl and chatting to me about

programming and scientific writing. Little Duncan, I will always look up to you; thanks

for bearing the brunt of the club work this year! Chia-Yang, ever a smile and always

positive. Big Duncan, I couldn’t ask for a more down-to-Earth and welcoming supervisor;

your patience and idea-bouncing has been the most appreciated throughout this project.

My second thanks go to my friends, both from UWA and those beyond. Working

through the hardship wouldn’t have been possible without your support, comfort, laughs

and understanding - I hope I see more of you all! I especially commend the UWA gang

for their ceaseless tolerance of my ranting and tyrades...!

For helping me learn to analyse C++ scripts and clicking that final piece into place, I

thank A/Prof. Dylan Jayatilaka. For providing me their inverse Abel transform to work

with and answering my novice questions relating to it, I extend my deep gratitude to the

Gascooke group, Flinders University. For developing an open-source C++ RANSAC circle

detection implementation and allowing me to use it as the skeleton for an ellipse detecting

scheme, I give both thanks and respect to Kevin Hughes, as well as an appreciation for

sharing his implementation in the open-source community.

No man is an island. You are my rock Deanna; you’re love and guidance helped me

deal with the illness, the struggles and the stress. I look forward to the future, Our future

together; I know I can overcome anything with you by my side.

Abstract

Velocity map imaging (VMI) is an ion imaging technique used in photoelectron spec-

troscopy to give the photoelectron spectrum and the photoelectron angular distribution

(PAD) for an anionic species, with quicker image acquisition times and often better resolu-

tion than many comparable techniques. The current laboratory apparatus, a time-of-flight

mass spectrometer coupled with a photoelectron spectrometer (TOF-PES), is being ex-

tended to include a VMI photoelectron spectrometer. After photodetachment, a carefully

chosen electric field maps all photoelectrons with the same initial velocity vector to the

same position on a phosphor screen-CCD camera assembly.

Whilst powerful in terms of maintenance and resolution, a significant issue with VMI

exists with the experimental images themselves. Due to the geometry of the VMI appa-

ratus, the images captured are a 2D projection of the 3D photoelectron initial velocity

distribution. When the distribution is cylindrically symmetrical parallel with the image,

this projection is known as the Abel transform of the distribution. By applying the inverse

Abel transform (IAT) to experimental images, it is possible to recover a slice through the

axis of symmetry of the 3D distribution (which is equivalent to the entire distribution).

A C++ implementation of the IAT for use with FITS images was kindly provided by

the Gascooke group, Flinders University which was subsequently ported from a Windows

compiler-specific form to generic Linux -compatible form for use on the laboratory com-

puters. The original script relies on the user knowledge of the center coordinate of the

distribution, however it difficult to calculate the centre both without computer assistance

and in an experimental setting. Further to this, the IAT script was found to be extremely

sensitive (within 1pixel error) of the center coordinate of the test image by inspection of

the radial spectrum of the image.

After detailed analysis of the IAT script and rigorous mathematical justifcation, work

began on implementing an auto-centering scheme for the script. A random sample consen-

sus (RANSAC) scheme was found to be most suitable due to the low number of ‘active’

pixels in the images. RANSAC works by first detecting all ‘edge’ points, where sharp

colour changes occur, and then fitting a random sample of points to a set of initial criteria

- if these criteria are not met, the script resets and chooses another random sample set until

the initial criteria are satisfied. Building upon a previous open-source C++ RANSAC circle

detecting script provided by Kevin Hughes, a script for detecting ellipses was produced.

Circular images are expected due to the electric field mapping so misalignment can easily

be determined from the ellipse parameters allowing for straightforward calibration. The

script is extremely successful in detecting rings in simple experimental images but is unre-

liable for general photographic images due to interference with the edge detecting stage of

the script. The IAT and ellipse detection scripts were successfully combined to produce a

precise, self-centring tool for treatment of images from the soon-to-be-operational camera.

Summary of Student Achievement

Richard J. Bentley-Moyse 20773252

During this Master of Physical Science research project, I have managed to achieve the

following as part of my research:

• I have found my niche in the laboratory as being the only member specialising in

image analysis, and I have rigorously learnt and justified the theory behind both

the image processing and the camera operation itself. I am currently responsible for

image treatment and will continue to develop more efficient computation methods

during the course of my PhD.

• I ported the provided Windows XP, Borland C++ compiler-specific IAT script for

use in Linux with a generic compiler (eg. Command line)

• By building on the structure of Kevin Hughes’ existing open-source RANSAC circle

detection script, I was able to overhaul the selection criteria and devise my own

method for detecting ellipses using his existing RANSAC scheme. Using this ellipse

detecting script, I was able to modify the ported IAT script to automatically detect

the input image centre, eliminating any user-end errors resulting from incorrect

centre calculation. The ellipse detecting script will continue to be developed and

improved, and will eventually be made available online and open-source.

• I have partially completed the next step towards extracting information from ex-

perimental images, a Python script to recover the radial spectrum from the inverse

Abel transformed image. From this radial spectrum, using a Jacobian transforma-

tion, a kinetic energy spectrum can be recovered. This will only be possible once

the camera and electrostatic lens are finished being configured, and the resulting

velocity-to-radius electrostatic mapping is known.

• In order to achieve the above, I have learnt to read and write the C++ and Python

programming languages with only minor programming experience from Mathematica

over the course of the last two years work.

Contents

List of Figures iii

List of Tables iv

1 Introduction 1

1.1 Time-of-Flight Photelectron Spectrometer 1

1.1.1 Anion Photoelectron Spectroscopy 1

1.1.2 Time-of-Flight Mass Spectrometry 3

1.1.3 Apparatus Overview . 3

1.2 Velocity Map Imaging (VMI) . 6

1.2.1 VMI Camera . 6

1.2.2 Experimental Difficulties in VMI . 8

2 Mathematical Techniques 9

2.1 Linear Systems Theory . 9

2.1.1 Linear Systems and Notation . 9

2.1.2 The Superposition Principle . 10

2.1.3 The Time-Invariance Principle . 11

2.1.4 The Dirac Delta Function . 12

2.1.5 Convolution Integrals . 14

2.1.6 The Causality Principle . 14

2.2 State-Space Representation . 15

2.2.1 Example 1: Hooke’s Law with Damping 17

2.2.2 Example 2: 3rd-order Ordinary Differential Equation 17

3 The Abel & Inverse Abel Transforms 19

3.1 The Abel Transform . 19

3.2 The Inverse Abel Transform . 20

3.3 The IAT as a State-Space system . 22

3.4 Discretising the Inverse Abel Transform . 24

3.5 Realisation of an IAT Script . 25

i

CONTENTS ii

4 Centre Detection in Experimental Images 28

4.1 Random Sample Consensus (RANSAC) . 28

4.2 Circle Detection Scheme . 29

4.2.1 Canny Edge Detection Algorithm . 29

4.2.2 RANSAC Step . 30

4.3 Ellipse Detection Scheme . 31

4.4 Configuration of Parameters . 34

4.5 Self-Centering Inverse Abel Transform Script 44

4.6 Further Work on Centre Detection and Image Reconstruction 44

5 Conclusions 48

References 51

A RANSAC Circle Detection Script 52

B RANSAC Ellipse Detection Script 62

C Radial Profile Script 76

D Research Project Proposal 87

List of Figures

1.1 Photodetachment scheme demonstrating the Frank-Condon principle 3

1.2 Schematic of the Wild laboratory TOF-PES without SEVI extension 4

1.3 The extraction chamber plate array and resulting ions paths 5

1.4 Einzel lens diagram with cut-out showing ion path 5

1.5 VMI camera arrangement . 6

1.6 Geometry of VMI . 7

3.1 Visual representation of the Abel and inverse Abel transforms 20

3.2 Test images . 26

3.3 Output images from IAT about three different centre coordinates with as-

sociated radial profile (TesseracT) . 27

4.1 Canny edge detection output with Cmax = 190 30

4.2 Geometry of test centre determination . 30

4.3 Flowchart Schematic of RANSAC Circle Detection Script 32

4.4 Original image fits with Cmax = 190, 104 iterations (TesseracT) 36

4.5 Distorted image fits with Cmax = 190, 104 iterations (TesseracT) 41

4.6 Results for ellipse detection threshold = 0.8, 105 iterations (Albatross) . . . 45

4.7 Results for ellipse detection threshold = 0.9, 105 iterations (Albatross) . . . 46

iii

List of Tables

3.1 9th order parameter fit to Expression (3.14) 23

4.1 Values for original test image with Cmax = 190 (TesseracT) 37

4.2 Values for original test image with ellipse threshold = 0.80 (Albatross) . . . 37

4.3 Values for original test image with ellipse threshold = 0.90 (Albatross) . . . 37

4.4 Values for original test image with ellipse threshold = 0.95 (Albatross) . . . 38

4.5 Values for distorted test image with Cmax = 190 (TesseracT) 39

4.6 Values for distorted test image with ellipse threshold = 0.80 (Albatross) . . 42

4.7 Values for distorted test image with ellipse threshold = 0.90 (Albatross) . . 42

4.8 Values for distorted test image with ellipse threshold = 0.95 (Albatross) . . 43

iv

Chapter 1

Introduction

Physical chemistry is largely concerned with the study of physical matter and how chemical

reactions occur in terms of the principles of physics, specifically quantum mechanics.

Spectroscopy is the study of the interaction of matter and light and is frequently used

for a multitude of different experimental scenarios.1–3 In this thesis, the apparatus and

operational procedures currently used by the research group are introduced, as well as the

groundwork for a slow-electron velocity map imaging spectrometer that is in development

for the apparatus. The focus of this thesis is to develop the tools necessary to treat

experimental images from the new camera and to work towards the extraction of useful

information from these images.

This chapter is structured in the following way. In Section 1.1, an overview of the tech-

niques and the laboratory apparatus is given. Section 1.2 introduces velocity map imaging,

the basis of the new technique and equipment, with Section 1.2.1 further discussing the

new imaging technique and issues related to image aquisition and data extraction.

1.1 Time-of-Flight Photelectron Spectrometer

The experimental apparatus consists of a time-of-flight mass spectrometer coupled with

a photoelectron spectrometer (TOF-PES), allowing for mass-selective photoelectron spec-

troscopy. The apparatus is a large vacuum chamber assembly and allows for the addition

of new chambers and components, as well as the modification of existing parts. Cur-

rent research in the laboratory is focused on the study of clusters (two or more species

interacting with one another) and the solvation of anions.4,5

1.1.1 Anion Photoelectron Spectroscopy

Photoelectron spectroscopy (PES), also known as photodetachment spectroscopy, is a

spectroscopic technique used to probe the binding (or ionisation) energies of different

atomic, molecular and cluster species. The technique is based on the photoelectric effect

in which a photon of sufficient energy interacts with an atom or molecule to eject an

1

1 Introduction 2

electron (namely, a photoelectron). Anion PES focuses on the photelectrons detached

from an anionic species in order to provide information about both the neutral species.

For a species M excited by a photon of frequency ν:

M´ ` hν ÑM ` e´

The kinetic energy of the electrons EK will be that excess energy from overcoming the

binding energy.

EK “ Eγ ´ EB (1.1)

As the frequency of the incident photon is known and the velocity of the photoelectrons

can be measured, the electron binding energy for the species can be determined:

EB “ Eγ ´ EK “ hν ´
1

2
mev

2

The ejected electrons will have kinetic energies characteristic of the neutral state accessed

and the energy level of the target anion upon which photodetachment took place. That

is,

EB “ Epneutralq ´ Epanionq

The photodetached electrons are directed down a flight tube of known length s. If the

time-of-flight τ is measured, the kinetic energy of an electron can be found using

EK “
1

2
mev

2 “
1

2
me

´ s

τ

¯2
(1.2)

If both the resulting neutral and the target anion are in the lowest vibrational state,

the energy difference will correspond to what is known as the adiabatic electron affinity

EAa, which is defined to be the energy released when an electron attaches to a gas-phase

atom.6 The electron binding energy and electron affinity are equal if the geometry of the

anion and neutral are sufficiently similar, and as such can give use an indepth analysis of

the structure of the neutral due to the vibrational wavefunction overlap of the anion and

neutral product.7

A crucial principle in anion spectrometry is the Frank-Condon principle6 which states

that when a molecule undergoes an electronic transition, the electronic transition takes

place much faster than the nuclei can respond as the target nuclei are much more massive

than their associated electrons. Before any photon absorption takes place, the molecule

are considered to be in the lowest vibrational energy state of its electronic energy state,

with the most probable location of the nuclei being at some equilibrium separation. As

a result of this, the configuration of the nucleus or nuclei can be considered to remain

constant during the electronic transition. Hence, when the species is excited the most

probable transition is that vibrational level of the upper energy level that has the clos-

est internuclear separation to the initial equilibrium separation. This is demonstrated

1 Introduction 3

Figure 1.1: Photodetachment scheme demonstrating the Frank-Condon principle

graphically in Figure 1.1.

1.1.2 Time-of-Flight Mass Spectrometry

Time-of-Flight mass spectrometry measures the mass-to-charge number ratio of analyte

ions. A simplified look, assuming ions begin at rest, involves accelerating ions of mass m

and charge q “ ez over a short distance d using an electric field of strength E, then a

measurment of the time t it takes for the ions to traverse a drift tube of length l. The

electric potential energy of the particles traversing the field is then

EP “ ezEd

This potential energy is converted into kinetic energy, so that

EK “
1

2
mv2 “ ezEd

Note that the velocity will be l
t , so that the mass-to-charge ratio is

1

2
m

ˆ

l

t

˙2

“ ezEd ùñ
m

z
“ 2eEd

ˆ

t

l

˙2

1.1.3 Apparatus Overview

The construction of the TOF-PES was overseen and documented by LaMacchia8 with

further modifications by Quak9.

1 Introduction 4

Figure 1.2: Schematic of the Wild laboratory TOF-PES without SEVI extension

Use of the TOF-PES first begins at the gas mixing station, where gaseous and liquid

samples not readily in the gas phase, as well as buffer gases, are mixed. To form clusters,

NF3 is used as a source of F´ ions and similarly CCl4 is used for Cl´ ions (but is not

readily gaseous). The second sample gas species is mixed with the halide ion source. Argon

is used both as a cooling buffer gas to decrease thermal spread of the molecular beam in

later chambers of the apparatus and also as a source of slow electrons as documented by

LaMacchia8 in the basic reaction scheme, with M the central molecule of the cluster and

using F´ ions as a an example:

Ar` e´fast Ñ Ar` ` e´slow ` e´fast

NF3 ` e´slow Ñ rNF3s
´
Ñ NF2 ` F´

F´ `M Ñ rF ¨ ¨ ¨Ms´

(1.3)

The gas mixture is injected into the source chamber (see Figure 1.2) through a pulsed

nozzle driver which acts both as a way to control gas flow and also as a means to selectively

give the gas pulse more energy. The source chamber houses twin rhenium filaments that

act as a fast electron source through thermionic emission8 producing a plasma in a scheme

analogous to that shown in (1.3). The gas then passes through a conical skimmer that acts

as a collimator with a thin (1mm or 3mm) orifice that reduces the spacial cross-section of

the molecular beam.

Upon entering the extraction chamber, the beam is redirected down the flight tube by

1 Introduction 5

a series of five stainless steel plates separated by ceramic rods, with 3 of the plates having

annuli to allow the passage of anions, as first demonstrated by Wiley and McLaren10. A

set of X ´ Y deflection plates are then used to adjust the direction of the resulting anion

beam, as shown in Figure 1.3

Figure 1.3: The extraction chamber plate array and resulting ions paths

The apparatus is separated into two sections by a gate valve placed between the ex-

traction chamber and the time-of-flight tube to allow for frequent extraction chamber

cleaning, with both sections kept at different pressures during operation and standby to

promote movement of the molecular beam in a single direction through the apparatus.2

Two Einzel lenses (see Figure 1.4) located in the time-of-flight tube refocus the beam to

counteract beam spreading due to Coulomb repulsion. An Einzel lens is comparable to

an optical lens in that it focuses the molecular beam without changing the energies of the

particles upon exiting11.

Figure 1.4: Einzel lens diagram with cut-out showing ion path

The molecular beam then passes into the laser interaction chamber for photoelec-

tron spectrum measurements or continues onwards to an ion detector for mass spectrum

measurements. The laser is a fixed wavelength 1064nm Nd:YAG (Neodynium : Yttrium

1 Introduction 6

Aluminium Garnate Y3Al5O12q pulsed laser. The frequency is then doubled to give 532nm,

and doubled again to give 266nm, using an optics array. The laboratory is also in posses-

sion of a tuneable dye laser for frequency scanning that is currently not in use.

1.2 Velocity Map Imaging (VMI)

Velocity map imaging is a technique that was first developed by Eppink and Parker12.

Previous ion imaging techniques suffered from distortions in experimental images due to

use of conventional grid electrodes. Eppink and Parker introduced the use of a simple

cylindrical three-plate electrostatic lens instead of the grid to both combat these distor-

tions, enlarge the image and allow the use of an electrostatic field to map ions onto the 2D

imaging plane. With a sagacious choice of electrostatic lens configuration, an electric field

can be found such that charged particles with the same initial velocity can be mapped to

the same point on the detector, independent of the individual particles distance from the

electrostatic lens cylindrical axis12.

A series of images are collected and combined to produce experimental images consist-

ing of rings corresponding to the kinetic energies of the photoelectrons. As all particles

originate from the same interaction region, and the field maps all anions regardless of

initial position, the detected rings share a common centre.

1.2.1 VMI Camera

A typical VMI camera setup consists of an electrostatic lens and a twin micro-channel

plate (MCP) array coupled with a phosphor screen (PS) and charge-coupled devide (CCD)

camera as shown in Figure 1.5. The analyte is injected as a mixed molecular beam that

is excited by perpendicular laser radiation linearly polarised in a mutually perpendicular

orientation. The general geometry of a VMI experiment is shown in Figure 1.6.

Figure 1.5: VMI camera arrangement

1 Introduction 7

Figure 1.6: Geometry of VMI

Micro-Channel Plate Array (MCP)

Utilising the electrostatic lens, the photodetached electrons are guided towards the MCP

setup which acts as an electron multiplier, amplifying the experimental signal. The basic

structure of a MCP involves a large array (of the order 104 and above) of parallel electron

multipliers, each acting as an independent channel. The gain of an MCP setup is primarily

determined by the length to diammeter ratio of the MCP, allowing for almost any size

reduction of the MCP without effecting the gain threshold13. This property is useful when

using the channels in measuring spatial information, as a greater density of channels will

give greater spacial resolution.

Phosphor Plate

The electrons exit the MCP and are incident upon a phosphor screen which acts to ‘convert’

the electrons into photons. A phosphor screen works by utilising cathodoluminescence,

wherein the impact of an electron upon a material results in the emission of photons.14

This conversion from electrons to photons does not result in loss of information for the

experiment as by this point the velocity of the electrons, and hence the relative position

on the experimental image, has already been mapped by the electrostatic lens.

Charge-Couple Device Camera (CCD)

The photons produced by the phosphor plate are detected by a CCD camera placed directly

behind the screen as shown in Figure 1.5. For the new camera, images will be timed to

be taken just after the beginning to just after the end of every pulse interval of the laser.

Only a small number of electrons make it to the detector over this interval, so a large

number of images are required. After a certain number of images are collected, they will

be summed and averaged as the camera proceeds to take more images. After a length of

1 Introduction 8

time, enough images will be taken for rings corresponding to the electron energy levels to

be formed.

Slow-Photoelectron Velocity-Map Imaging Spectroscopy (SEVI)

For a VMI experiment, a DC field large enough to direct all photoelectrons from the pho-

todetachment region is used. In slow-electron velocity map imaging spectroscopy (SEVI),

the same setup is used as in VMI, except a much lower DC field is used in order to only

extract low kinetic energy photoelectrons15. This allows for detection over a small range of

kinetic energies and the enlarging of the resultant image on the detector by manipulating

the electrostatic lens. By scanning through different frequencies using a tunable laser,

multiple high resolution spectra can be produced over a short measurement period and

the spectra combined16. After configuration of the VMI camera is complete, the aim is

to use SEVI spectroscopy to act as a counterpoint to the currently active photoelectron

spectrometer.

1.2.2 Experimental Difficulties in VMI

By using a cylindrically symmetrical electric field for the VMI camera mapping, the re-

sultant images with be that of circular rings corresponding the kinetic energy of the pho-

toelectrons. Hence, a major concern is that of centering the images when calculating the

photelectron spectrum or the PAD, which depend greatly upon the center of the distri-

bution. A scheme for detecting ellipses is presented in detail in Chapter 4 that allows for

automatically centering the images in later treatment.

Further to this, due to the geometry of the experiments, the images taken are 2D pro-

jections of the system under examination (in this case the 3D photoelectron initial velocity

distribution). The difficulty lies in extracting the original distribution whilst taking into

account experimental noise and the effects of pixelation. The use of a linearly polarised

laser imposes cyclindrical symmetry due to the relationship between the photoelectron

angular distribution and the laser polarisation17

When this system is cyclindrically symmetrical along an axis parallel to the image

taken, the particular projection is called the Abel transform.18 As such, a popular method

for calculating the original distribution, or equivalently a slice though the axis of symmetry

of the original 3D distribution, is the so-called inverse Abel transform. Both methods are

explained in greater detail in Chapter 3.

Chapter 2

Mathematical Techniques

Linear systems arise in a plethora of different fields of study and as such are of great

relevance to mathematicians, engineers and scientists alike. Furthermore, many nonlinear

systems can be approximated as linear over small ranges. Many physical systems can be

modelled well by linear differential equations, which are much easier to work with than

their more general, nonlinear, cousins. Signal and image processing frequently make use of

linear constructions, or at least the properties of linear systems, to calculate transformed

images. An issue that often arises with image treatment is that the images are discrete,

meaning that any continuous linear system needs to be discretised for handling images.

As images can be defined as matrices, the ability to write a linear differential equation in

a discretised matrix form is of particular relevance to image processing.

In this chapter, focus is restricted to linear ordinary differential equations (linear

ODE’s) with a single input and a single output with regards to later applications in Chap-

ter 3. It should be noted that in general, all linear physical systems will be described

by a linear partial differential equation, except in the case where the system input and

output are functions of only one independent variable. It is also possible in this setup

for systems to have multiple input and output functions. With respect to later applica-

tions, such systems with multiple inputs and outputs are outside the scope of this work.

In section 2.1, the mathematical principles behind linear systems are briefly explained.

Further to this, a subset of linear systems called linear time-invariant (LTI) systems are

introduced and some useful properties and formulations presented. In section 2.2, the

state-space representation of linear systems is introduced, in which an n-th order linear

ODE is decomposed into n-vector array of 1st-order linear ODEs.

2.1 Linear Systems Theory

2.1.1 Linear Systems and Notation

In a mathematical sense, a system is a collection of components where the interactions

between the individual components and the dynamics of the system are determined by

9

2 Mathematical Techniques 10

a mathematical equation. A linear system is simply that in which this mathematical

equation is linear, that is it follows the superposition principle which is discussed in further

detail below.

The general form of a linear n-th order ODE with a single input and output is

dn

dtn
yptq ` ¨ ¨ ¨ ` P2ptq

d2

dt2
yptq ` P1ptq

d

dt
yptq ` P0ptqyptq “ Q

`

uptq
˘

(2.1)

When considering such systems, it is convenient to introduce a ’system’ notation that

symbolically describes the system. For a system H “ Ht¨u with input uptq and output

yptq, it is written

yptq :“ H tuptq, tu (2.2)

This can simply be read as ‘for system H with input uptq, the corresponding output is yptq.

The benefit of this notation is that it vastly simplifies discussion of systems described by

complicated equations whilst still allowing the programming of desired properties.

2.1.2 The Superposition Principle

A system is said to be linear if it is described by a mathematical equation that follows the

superposition principle. Such an equation is also described as linear. The superposition

principle is an amalgamation of two different mathematical conditions, namely the addi-

tivity condition and the homogeneity condition, as opposed to a separate mathematical

construct.19

Principle 1 (The Superposition Principle). Any system described by a linear ODE has

the property that if αy1ptq is the system output for system input αu1ptq and if βy2ptq is

the system output for system input βu2ptq with α, β a constant then αy1ptq`βy2ptq is the

system output from system input αu1ptq ` βu2ptq.

In system notation, the superposition principle is demonstrated as

H tαu1ptq ` βu2ptq, tu “ αH tu1ptq, tu ` βH tu2ptq, tu

The Additivity Condition

The additivity condition is simply the Superposition Principle without scaling. In system

notation, the additivity condition is demonstrated as

H tu1ptq ` u2ptq, tu “ H tu1ptq, tu `H tu2ptq, tu

2 Mathematical Techniques 11

The Homogeneity Condition

The homogeneity condition requires that if the system input uptq is scaled by a constant,

then the system output yptq is scaled by the same constant. That is,

H tαuptq, tu “ αH tuptq, tu

2.1.3 The Time-Invariance Principle

If a further requirement is imposed upon the system, namely the time-invariance principle,

the system will belong to a subset of linear systems known as linear time-invariant (LTI)

systems. The choice of time as the invariant quantity is largely a matter of convention as

LTI systems commonly appear in signal processing and control theory. LTI systems (and

all other time-invariant systems) have the property that if ypt1q is the system output for

a system input upt1q, then for the system input upt2q the output will be ypt2q. In simpler

words, the system output does not depend explicitly upon time.19

In considering Expression (2.1), note that if the functions Pnptq are set as constants,

system output uptq is no longer explicitely dependent upon time and the ODE will be time-

invariant as required. This can be demonstrated as follows, by considering the general

linear ODE with time-shifted system input upt ` τq and corresponding output denoted

ŷptq, noting that the system itself is not time-shifted.

i.e

dn

dtn
ŷptq ` ¨ ¨ ¨ ` P2ptq

d2

dt2
ŷptq ` P1ptq

d

dt
ŷptq ` P0ptqŷptq “ Q

`

upt` τq
˘

(2.3a)

Consider now the unshifted ODE (with t1 the independent variable denoting time),

dn

dt1n
ypt1q ` ¨ ¨ ¨ ` P2pt

1q
d2

dt12
ypt1q ` P1pt

1q
d

dt1
ypt1q ` P0pt

1qypt1q “ Q
`

upt1q
˘

(2.3b)

If the change of variable t1 “ t` τ is made, with τ a constant, the change of variable gives

dt “ dt1. Hence, via the chain rule,

dn

dt1n
ypt1q “

dn

dt1n
ypt` τq “

dn

dtn
ypt` τq ¨

ˆ

dt

dt1

˙n

“
dn

dtn
ypt` τq (2.4)

Making use of this substitution and the results from (2.4) it is apparent that

dn

dtn
ypt` τq ` ¨ ¨ ¨ ` P1pt` τq

d

dt
ypt` τq ` P0pt` τqypt` τq “ Q

`

upt` τq
˘

(2.5)

Comparison of (2.5) with (2.3a) (excluding the n-th term as it has no coefficient) yields

Pmptq
dm

dtm
ŷptq “ Pmpt` τq

dm

dtm
ypt` τq (2.6)

with m ă n for m,n P N0.

2 Mathematical Techniques 12

Firstly, this implies that

Pmptq “ Pmpt` τq (2.7a)

In general, this will not be true for arbitrary functions Pmptq, which implies that Pm is

constant. Further to this and coupled by consideration of the n-th terms of each expression,

it is also implied that

ŷptq “ ypt` τq (2.7b)

Using the results from (2.7a) and (2.7b) with (2.3a) gives

dn

dtn
ypt` τq ` ¨ ¨ ¨ ` P1

d

dt
ypt` τq ` P0ypt` τq “ Q

`

upt` τq
˘

(2.8)

So that the output ŷptq is the basic output yptq with equivalent time-shifting to the input

upt` τq.

i.e.

uptq ÞÑ yptq ùñ upt` τq ÞÑ ypt` τq as required.

Therefore, the general form of a LTI ordinary differential equation (with single input) is

dn

dtn
yptq ` ¨ ¨ ¨ ` P1

d

dt
yptq ` P0yptq “ uptq (2.9)

Principle 2 (The Time-Invariance Principle). Any system described by a linear ODE

with constant coefficients will have the property that if the system input uptq yields a

system output of yptq, then the time-shifted system input upt` τq yields a system output

of ypt` τq shifted by the same quantity.

Mathematically, In system notation, the time-invariance principle is demonstrated as

H tupt` τq, tu “ ypt` τq

2.1.4 The Dirac Delta Function

The Dirac delta function δpτq, named for Paul Dirac, is a non-physical function with a

singularity given an argument of zero.

i.e

δpτq :“

#

0 : τ ‰ 0

8 : τ “ 0
(2.10)

The Dirac delta function is defined to have unit area. That is,

ż 8

´8

δpτqdτ :“ 1 (2.11)

By further definition,

δpτq :“
d

dτ
Hpτq (2.12)

2 Mathematical Techniques 13

where

Hpτq :“

#

1 : τ ą 0

0 : τ ď 0
(2.13)

is the Heaviside Step function. Another useful definition of the Dirac delta function is

ż 8

´8

fpτqδpτqdt “ fp0q (2.14)

This can be verified using integration by parts and (2.12), assuming limτÑ8 fpτq “ 0:

ż 8

´8

fpτqδpτq dτ “ rfpτqHpτqs8´8 ´

ż 8

´8

f 1pτqHpτqdτ

“ ´

ż 8

´8

f 1pτqHpτq dτ

“ ´

ż 8

0
f 1pτqdτ

“ fp0q as required.

In fact, the more general equation (with the Dirac delta function centered on τ “ t) is19

ż 8

´8

fpτqδpt´ τqdτ “ fptq (2.15)

Expression (2.15) can be verified by making the substitution τ Ñ τ ` t in the integrand

of (2.14) and by noting that δpαq “ δp´αq:

ż 8

´8

fpτqδpτq dτ “ fp0q

Ñ

ż 8

´8

fpτ ` tqδpτq dτ “ fptq

ż 8

´8

fpτqδpτ ´ tq dτ “ fptq

ż 8

´8

fpτqδpt´ τq dτ “ fptq

The Dirac delta function is used extensively in the treatment of linear systems as, by

using expression (2.15), any system input can be rewritten in the form

uptq “

ż 8

´8

upτqδpt´ τqdτ (2.16)

Consider the output y(t) of some system LTI system G. Then, using the superposition

2 Mathematical Techniques 14

principle (specifically, the homogeneity condition)

yptq “ G tuptq, tu

“ G
"
ż 8

´8

upτqδpt´ τq dτ, t

*

“

ż 8

´8

upτq.G tδpt´ τq, tu dτ

The term G tδpt´ τq, tu, labeled as hpt´ τq, is simply the output from system G resulting

from the Dirac delta function as an input.

i.e

hptq “ G tδptq, tu (2.17)

Therefore,

yptq “

ż 8

´8

upτqhpt´ τq dτ (2.18)

The function hp¨q, known as the impulse response function, fully characterises an LTI

system in that only hptq and the input uptq are required to calculate the output yptq.

2.1.5 Convolution Integrals

The form of the argument in both δpt´ τq and hpt´ τq, while peculiar at first glance, has

been chosen with judicious care. The notation

fptq˚ gptq :“

ż 8

´8

fpτqgpt´ τqdτ (2.19)

is used to represent the convolution of two continious functions fptq and gptq. Therefore,

expression (2.18) becomes

yptq “ uptq ˚ hptq (2.20)

2.1.6 The Causality Principle

As shown, the impulse response function hptq of an LTI system characterises the behaviour

of the system. Looking back at the general form for a LTI ordinary differential equation

(2.9), the homogenous LTI ODE is

dn

dtn
yHptq ` ¨ ¨ ¨ ` P1

d

dt
yHptq ` P0yHptq “ 0 (2.21)

with homogenous solution yHptq. In linear systems theory, the solution yHptq is known as

the natural or transient response function of a system; that is, the response of the system

to no input.19 Therefore, if h1ptq is considered the particular solution (or output) to the

LTI ordinary differential equation with input δptq and yHptq the system output resulting

from an input of 0, then by the superposition principle h2ptq “ h1ptq`yHptq is also a valid

2 Mathematical Techniques 15

impulse response function for the system with system input δptq. This is easily shown by:

„

dn

dtn
` ¨ ¨ ¨ ` P1

d

dt
` P0



h2ptq “

„

dn

dtn
` ¨ ¨ ¨ ` P1

d

dt
` P0



`

h1ptq ` yHptq
˘

“

„

dn

dtn
` ¨ ¨ ¨ ` P1

d

dt
` P0



h1ptq

`

„

dn

dtn
` ¨ ¨ ¨ ` P1

d

dt
` P0



yHptq

“ δptq ` 0

“ δptq

Therefore, hptq is not uniquely determined by the system. As LTI systems theory is most

often applied to the modelling of physical systems, it is fitting to invoke the causality

principle and hence impose physical constraints upon the system. In simple terms, the

causality principle states that the cause cannot precede the effect. That is, the output is

zero until the system experiences an input.

Principle 3 (The Causality Principle). The output ypt ´ τq of any LTI system must

vanish prior to the input start time τ . Moreover, the impulse response function for any

LTI system must vanish for all t ă τ .

In system notation

hpt´ τq “ H tδpt´ τq, tu “ 0, for all t ă τ

The causality principle forces selection of the hptq that vanishes for all time less than

τ . If we construct a new impulse response function as we have previously hnewptq “

hptq ` yHptq as previously, hnewptq is only valid if it satisfies the causality principle. As

hptq satisfies the causality principle, for hnewptq to also satisfy the causality principle

requires that yHptq “ 0, which is only true in the trivial case but not in general. Hence,

hptq is the unique impulse function for the LTI system.

2.2 State-Space Representation

The state-space representation is a representation of an nth order ODE as an n-vector

array of 1st-order linear ODEs. The main purpose of the state-space representation of

ODEs is to simplify calculations that would otherwise involve tedious integral transforms

and to allow for easier treatment of multiple input and output systems.

The general structure of a continuous-time linear dynamical system in state-space rep-

resentation is19

State Equation

9xptq “ Aptqxptq `Bptquptq (2.22)

2 Mathematical Techniques 16

Output Equation

yptq “ Cptqxptq `Dptquptq (2.23)

Impulse Response Function

hptq “ CptqetAptqBptq (2.24)

where

• t usually denotes time (in signal processing uses) but can be a spatial variable

• xptq is called the system state (vector)

• uptq is called the system input (vector). Written uptq in the single input case

• yptq is called the system output vector). Written yptq in the single output case

• Aptq is called the system or dynamics matrix, and determines the affect the current

state xptq has on the state change x1ptq

• Bptq is called the control or input matrix, and determines the affect that the system

input uptq has upon the state change x1ptq

• Cptq is called the output or sensor matrix, and determines the relationship between

the system state xptq and system output yptq

• Dptq is called the feed-forward or feedthrough matrix, and determines the affect that

system input uptq will have on system output yptq

In the case of time-invariance, these become

9xptq “ Axptq `Buptq (2.25)

yptq “ Cxptq `Duptq (2.26)

hptq “ CetAB (2.27)

The explicit solution to state equation is given by19

xpρi`1, zq “ Φpρi`1, ρiqxpρi, zq ´
1

π

ż ρi`1

ρi

Φpρi`1, rqB̃

r

BF pr, zq

Br
dr (2.28)

where

Φpρ, ρ0q “ e
A ln

´

ρ0
ρ

¯

“

»

—

—

—

—

—

—

—

—

—

—

—

–

´

ρ0
ρ

¯λ1
0 ¨ ¨ ¨ 0

0
´

ρ0
ρ

¯λ2 . . . 0

...
. . .

. . .
...

0 0 ¨ ¨ ¨

´

ρ0
ρ

¯λk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(2.29)

2 Mathematical Techniques 17

2.2.1 Example 1: Hooke’s Law with Damping

A good introductory example to state-space representation is the consideration of a famil-

iar linear second order mass-spring system, Hooke’s law with a damping term:

m:zptq ` d 9zptq ` kzptq “ F

where zptq is the displacement of the mass, 9zptq is the velocity of the mass, :zptq is the

acceleration of the mass with m as the value of the mass, d is the damping coefficient and

k is Hooke’s constant.

Choose the components of x1ptq “ zptq and x2ptq “ 9zptq “ 9x1ptq

9x2ptq “ :zptq “
F ´ d 9zptq ´ kzptq

m
“
F ´ dx2ptq ´ kx1ptq

m

ñ

«

9zptq

:zptq

ff

“

«

0 1

´ k
m ´ d

m

ff«

zptq

9zptq

ff

`

«

0
1
m

ff

F

So, if we take the system input to be the external forces u “ F and with system state

xptq “

«

x1ptq

x2ptq

ff

“

«

zptq

9zptq

ff

we have

9xptq “

«

0 1

´ k
m ´ d

m

ff

xptq `

«

0
1
m

ff

uptq “ Axptq `Buptq

If the output is the position of the mass then

yptq “
”

1 0
ı

«

zptq

9zptq

ff

“

”

1 0
ı

«

x1ptq

x2ptq

ff

“ Cxptq

2.2.2 Example 2: 3rd-order Ordinary Differential Equation

Take the following general 3rd-order ODE

d3

dt3
yptq ` αptq

d2

dt2
yptq ` βptq

d

dt
yptq ` γptqyptq “ uptq

Assemble the state vector xptq as follows:

x1ptq “ yptq

x2ptq “
d

dt
yptq

x3ptq “
d2

dt2
yptq

2 Mathematical Techniques 18

Then

9x1ptq “ x2ptq “
d

dt
yptq

9x2ptq “ x3ptq “
d2

dt2
yptq

9x3ptq “
d3

dt3
yptq

The state vector and its derivative are then

xptq “

»

—

–

x1

x2

x3

fi

ffi

fl

“

»

—

–

yptq
d
dtyptq
d2

dt2
yptq

fi

ffi

fl

9xptq “

»

—

–

9x1

9x2

9x3

fi

ffi

fl

“

»

—

–

d
dtyptq
d2

dt2
yptq

d3

dt3
yptq

fi

ffi

fl

Therefore, the state-space representation is

9xptq “

»

—

–

0 1 0

0 0 1

´αptq ´βptq ´γptq

fi

ffi

fl

xptq `

»

—

–

0

0

1

fi

ffi

fl

uptq

yptq “
”

0 0 1
ı

xptq

This result can easily be generalised for an n-th order linear ODE by using expression

(2.1). As previously demonstrated, the dynamics behind an LTI system are governed

by a differential equation of the form given in expression (2.9). Therefore, any (single

input-single output) n-th order LTI system can be represented by a set of state-space

equations:

9xptq “

»

—

—

–

0
...

I n´2

´Pn´1 ¨ ¨ ¨ ´P1

fi

ffi

ffi

fl

xptq `

»

—

—

–

0
...

b1

fi

ffi

ffi

fl

uptq (2.30)

yptq “
”

0 ¨ ¨ ¨ 1
ı

xptq (2.31)

where Im is the identity matrix and Pm constants.

Chapter 3

The Abel & Inverse Abel

Transforms

From henceforth, the particular naming practice of ‘time’ invariant is unfortunate - this

section is primarily concerned with space-invariance as our functions act over the space-

domain. As such, the invariance in following sections will also be referred to as shift

invariance, but follows the same properties as previously presented.

In Section 3.1, the forward Abel transform (FAT) is presented with a brief description

and physical interpretation. Section 3.2 introduces the inverse Abel transform (IAT) and

a modified version with shift-invariant properties. Section 3.3 introduces the state-space

representation of LTI ODEs, with the result being discretised in Section 3.4. In Section 3.5,

a C++ implementation of the scheme is discussed.

3.1 The Abel Transform

Any projection of a cylindrically symmetrical distribution onto a plane parallel to the axis

of symmetry is described as an Abel transform of the distribution. Lasers are commonly

used in ion imaging technique for excitation and photodetachment, and as such can im-

part cylindrical symmetry upon a system under examination. The geometry of most ion

imaging techniques and subsequent projection image of the target distribution is a com-

mon issue for direct imaging techniques. The Abel transform, as well as the inverse Abel

transform, are shown graphically in Figure 3.1.

Mathematically, for a system in which the z-axis is the axis of symmetry, the Abel

transform of a 3D distribution function fpρ, zq is given by18

F px, zq “ 2

ż 8

ρ

fpρ, zqρ
a

ρ2 ´ x2
dρ (3.1)

where

ρ2 “ x2 ` y2

19

3 The Abel & Inverse Abel Transforms 20

Figure 3.1: Visual representation of the Abel and inverse Abel transforms

3.2 The Inverse Abel Transform

Due to the projection issue in VMI and other ion imaging techniques, the inverse Abel

transform (IAT) is used extensively for the treatment of experimental images. The IAT

offers a means to recover a slice of a cylindrically symmetrical 3D system from the 2D

projection of said system onto a plane perpendicular to the axis of symmetry.

Mathematically, for a system in which the z-axis is the axis of symmetry, the inverse

Abel transform of a 2D projection F px, zq is given by18

fpρ, zq “ ´
1

π

ż 8

ρ

BF px, zq

Bx

dx
a

x2 ´ ρ2
(3.2)

where ρ is the cylindrical radius (ρ2 “ x2` y2) and it is assumed that F px, zq approaches

zero faster than x´1. Now, with the use of the Heaviside step function and a minor

rearrangement, the bounds can be altered to give

fpρ, zq “

ż 8

0
´

1

π

BF px, zq

Bx

H
`

1´ ρ
x

˘

x

b

1´
`

ρ
x

˘2
dx (3.3)

with Hp1´ ρ
xq being the Heaviside step function as defined as in expression (2.13). Now,

a point transformation can be applied to ρ and x to alter the form of the transformation:

Let

x “ e´t ùñ t “ ´ lnpxq ; ρ “ e´τ ùñ τ “ ´ lnpρq

and
dx

dt
“ ´e´t ùñ dx “ ´e´tdt

3 The Abel & Inverse Abel Transforms 21

Note that as x Ñ 8, t Ñ ´8 and as x Ñ 0, t Ñ 8. Use tilde to differentiate new

modified functions:

fpρ “ e´τ , zq Ñ f̃pτ, zq ; F px “ e´t, zq Ñ F̃ pt, zq

By the chain rule,
dF̃

dt
“

dF

dx

dx

dt
“ ´

dF

dx
e´t

So

f̃pτ, zq “ fpe´τ , zq “

ż ´8

8

´
1

π

1

p´e´tq

BF̃ ptq

Bt

H
´

1´ e´τ

e´t

¯

e´t

c

1´
´

e´τ

e´t

¯2

`

´e´t
˘

dt

“

ż 8

´8

1

π

BF̃ ptq

Bt

H
`

1´ e´pτ´tq
˘

e´t
a

1´ e´2pτ´tq
dt

The Heaviside integrand will only be unity if

e´pτ´tq ă 1 ùñ ´pτ ´ tq ă 0 ùñ τ ą t

Hence, the Heaviside can be rewritten to be Hpτ ´ tq “ Hpt´ τq:

f̃pτ, zq “

ż 8

´8

1

π

BF̃ ptq

Bt

Hpτ ´ tq

e´t
a

1´ e´2pτ´tq
dt (3.4)

With a slight rearrangement,

f̃pτ, zq “

ż 8

´8

1

πe´t
BF̃ ptq

Bt

Hpτ ´ tq
a

1´ e´2pτ´tq
dt (3.5)

Defining the (modified) input as

ũpτq “
1

πe´τ
BF̃ pτq

Bτ
(3.6)

and the (modified) impulse response function as

h̃pτq “
1

?
1´ e´2τ

; τ ě 0 (3.7)

it is apparent that this modified IAT is in the form of a convolution. Hence, the modified

3 The Abel & Inverse Abel Transforms 22

IAT can be written in convolution notation as

f̃ “ ũ˚ h̃ (3.8)

3.3 The IAT as a State-Space system

As shown, convolution is a linear space-invariant operation. Hence, the IAT can be rep-

resented as a LTI system with the state-space representation

x̃1pτ, zq “ Ãx̃pτ, zq ` B̃

˜

1

πe´τ
BF̃ pτ, zq

Bτ

¸

“ Ãx̃pτ, zq ` B̃ũpτ, zq

f̃pτ, zq “ C̃x̃pτ, zq ` D̃

˜

1

πe´τ
BF̃ pτ, zq

Bτ

¸

“ C̃x̃pτ, zq ` D̃ũpτ, zq

(3.9)

As Ã is a square matrix, it is convenient to choose a diagonal matrix and the simple case

of no direct-feedthrough, giving

Ã “

»

—

—

—

—

—

–

λ1 0 ¨ ¨ ¨ 0

0 λ2
. . . 0

...
. . .

. . .
...

0 0 ¨ ¨ ¨ λk

fi

ffi

ffi

ffi

ffi

ffi

fl

(3.10)

B̃ “

»

—

—

—

—

—

–

b1

b2
...

bk

fi

ffi

ffi

ffi

ffi

ffi

fl

(3.11)

C̃ “
”

1 1 ¨ ¨ ¨ 1
ı

(3.12)

Recognise that the exponential of any square matrix X is defined (via Taylor series) to be

eX “ 1`X `
1

2!
X2 `

1

3!
X3 ` . . . “

8
ÿ

n“0

1

n!
Xn

Note also that

Ãn “

»

—

—

—

—

—

–

λn1 0 ¨ ¨ ¨ 0

0 λn2
. . . 0

...
. . .

. . .
...

0 0 ¨ ¨ ¨ λnk

fi

ffi

ffi

ffi

ffi

ffi

fl

ùñ eAτ “

»

—

—

—

—

—

–

eλ1τ 0 ¨ ¨ ¨ 0

0 eλ2τ
. . . 0

...
. . .

. . .
...

0 0 ¨ ¨ ¨ eλkτ

fi

ffi

ffi

ffi

ffi

ffi

fl

3 The Abel & Inverse Abel Transforms 23

Hence,

h̃pτq “
”

1 1 ¨ ¨ ¨ 1
ı

»

—

—

—

—

—

–

eλ1τ 0 ¨ ¨ ¨ 0

0 eλ2τ
. . . 0

...
. . .

. . .
...

0 0 ¨ ¨ ¨ eλkτ

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

b1

b2
...

bk

fi

ffi

ffi

ffi

ffi

ffi

fl

“

k
ÿ

n“1

bneλnτ (3.13)

i.e
k
ÿ

n“1

bneλnτ “
1

?
1´ e´2τ

(3.14)

Parameters to this expression have been calculated to 9th order by Hansen18 with an rms

error of 0.001. These values are given in Table 3.1.

k bk λk

1 0¨318 0
2 0¨19 ´2¨1
3 0¨35 ´6¨2
4 0¨82 ´22¨4
5 1¨8 ´92¨5
6 3¨9 ´414¨5
7 8¨3 ´1889¨4
8 19¨6 ´8990¨9
9 48¨3 ´47391¨1

Table 3.1: 9th order parameter fit to Expression (3.14)

Utilising the inverse coordinate transform

τ “ ´ lnpρq ùñ dτ “ ´
1

ρ
dρ

and expression (3.9) gives

´ρx1pρ, zq “ Ãxpρ, zq ` B̃

ˆ

1

πρ

ˆ

´ρ
BF pρ, zq

Bρ

˙˙

fpρ, zq “ C̃xpρ, zq

Therefore

x1pρ, zq “ ´
1

ρ
Ãxpρ, zq `

1

πρ
B̃
BF pρ, zq

Bρ

fpρ, zq “ C̃xpρ, zq

(3.15)

3 The Abel & Inverse Abel Transforms 24

3.4 Discretising the Inverse Abel Transform

Previous working has only dealt with the continous case but it is far more practical, with

regards to the nature of image treatment, that current results be adjusted for the continous

case.20 First, the equation is written as

xpρi`1, zq “ Φpρi`1, ρiqxpρi, zq ´
1

π

ż ρi`1

ρi

Φpρi`1, rqB̃

r

BF pr, zq

Br
dr

Let

ρi “ pN ´ iq∆

ρi`1 “ pN ´ i´ 1q∆

with

∆ “
ρmax
N ´ 1

where N is the total number of data points, ∆ is the data stepsize and ir0, N ´ 2s. Then,

using the previous definitions for Φpρi`1, ρiq and B̃ and assuming that BrF pr, zq is constant

on rρi, ρi`1s (staircase / zero-order hold approximation) gives

»

—

—

—

—

—

–

x1pρi`1q

x2pρi`1q
...

xkpρi`1q

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

´

N´i
N´i´1

¯λ1
0 ¨ ¨ ¨ 0

0
´

N´i
N´i´1

¯λ2
¨ ¨ ¨ 0

...
...

. . .
...

0 0 ¨ ¨ ¨

´

N´i
N´i´1

¯λk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

x1pρiq

x2pρiq
...

xkpρiq

fi

ffi

ffi

ffi

ffi

ffi

fl

´
1

π

BF pρi, zq

Bρi

ż ρi`1

ρi

»

—

—

—

—

—

—

—

–

´

r
ρi`1

¯λ1
0 ¨ ¨ ¨ 0

0
´

r
ρi`1

¯λ1
¨ ¨ ¨ 0

...
...

. . .
...

0 0 ¨ ¨ ¨

´

r
ρi`1

¯λk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

b1

b2
...

bk

fi

ffi

ffi

ffi

ffi

ffi

fl

dr

r

Focusing on the integral,

ż ρi`1

ρi

»

—

—

—

—

—

—

—

–

´

r
ρi`1

¯λ1
0 ¨ ¨ ¨ 0

0
´

r
ρi`1

¯λ2
¨ ¨ ¨ 0

...
...

. . .
...

0 0 ¨ ¨ ¨

´

r
ρi`1

¯λk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

b1

b2
...

bk

fi

ffi

ffi

ffi

ffi

ffi

fl

dr

r
“

»

—

—

—

—

—

—

—

—

—

–

b1
şρi`1

ρi
rλ1´1

pρi`1q
λ1

dr

b2
şρi`1

ρi
rλ2´1

pρi`1q
λ2

dr

...

bk
şρi`1

ρi
rλk´1

pρi`1q
λk

dr

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

3 The Abel & Inverse Abel Transforms 25

Now,

bk

ż ρi`1

ρi

rλk´1

pρi`1qλk
dr “

#

bk ln pρi`1{ρiq λk “ 0
bk

λkr
λk

`

pρi`1q
λk ´ pρiq

λk
˘

λk ‰ 0

“

#

bk ln pρi`1{ρiq λk “ 0
bk
λk

`

1´ pρi{ρi`1q
λk
˘

λk ‰ 0

“

$

’

&

’

%

´bk ln
´

N´i
N´i´1

¯

λk “ 0

bk
λk

ˆ

1´
´

N´i
N´i´1

¯λk
˙

λk ‰ 0

Note that ρi “ ρi`1 ` ∆, so that ρi is the point before ρi`1. If the components are

labelled by iteration as opposed to radius (that is, i instead of ρ) then this order is reversed

and the final discrete solution state-equation expression (with BFi “
BF pρi,zq
Bρi

) is found to

be

xi`1 “ Φi xi ` BFi Γi (3.16)

with

Γi “

»

—

—

—

—

—

–

b1γipλ1q

b2γipλ2q
...

bkγipλkq

fi

ffi

ffi

ffi

ffi

ffi

fl

where

γipλkq “

$

’

&

’

%

´bk ln
´

N´i
N´i´1

¯

λk “ 0

bk
λk

ˆ

1´
´

N´i
N´i´1

¯λk
˙

λk ‰ 0

3.5 Realisation of an IAT Script

This formulation works by progressively evaluating inwards towards the origin of F px, zq

based on the previously calculated value. It should be noted that when i “ N ´ 1,

the system is undefined; that is when ρ “ 0. It should also be noted that due to this

singularity, the IAT actually amplifies noise close to the origin and is a significant issue

with the technique. Due to derivatives being calculated numerically, noise is also amplified

and some degree of interpolation is employed. These drawbacks are perhaps outweighed by

the benefit of faster computation, as for N data points and k state variables, computing the

IAT this way has a computational burden of Op2kNq whereas direct numerical integration

is OpN2q18.

The IAT is also very sensitive to noise near the axis of symmetry. Considering the

original 3D distribution, all points located at some distance r from cyclindrical axis only

contribute to points with x ď r in the projection (see Expression (3.2)). Hence, the

projection of the distribution actually contains less information about the image regions

3 The Abel & Inverse Abel Transforms 26

closer to the symmetry axis in comparison to those further away. Therefore, only x “ 0

points contain information about the centreline of the original distribution, and every

point in the projection contains information about points with r “ rmax. Experimentally,

noise is evenly distributed across the experimental image; as such, the reconstructed image

has increased noise towards the centreline.

A C++ implementation of the state-space approach to the IAT was provided by the

Gascooke group, Flinders University. A 401 pixel by 401 pixel test image centred on

(201,201) (see Figure 3.2) was also provided, consisting of 3 equidistant rings represen-

tative of the type of image that will be collected by the camera. A distorted version of

the image was produced by scaling the horizontal axis with an increase of 50 pixels in

total width, giving the distorted image dimensions of 451 pixels by 401 pixels centred

on (226,201). A pre-compiled Windows executable was also included that was the most

recently updated version of the script, allowing for initial testing before the porting was

complete. All computers in the laboratory, excluding one low hardware-specification Win-

dows XP machine, currently run on the Linux Mint operating system due to free-licensing

and software flexibility. The original script was compiled using a Borland C++ compiler

on Windows XP and as such employed commands specific to both Borland and Windows

C++ programming. Many of these headers do not have direct analogues from Windows to

Linux and as such an intimate knowledge of the script was required as well as a sufficient

familiarity with the C++ programming language.

(a) Original test image (b) Distorted test image

Figure 3.2: Test images

The script takes the file directory and the centre coordinates of the distribution in the

image as inputs. As shown in Figure 3.3, as the distance between the input centre and the

actual centre increases, the peaks begin to broaden which results in loss of resolution along

the independent axis. As this distance approaches 2 pixels, splitting of the rings in the

transformed image is readily apparent and verifiable upon referring to its radial profile.

As such, the performance and precision of the IAT script is heavily dependent upon the

centre detection procedure.

3 The Abel & Inverse Abel Transforms 27

(a) IAT about (201,201)

0 50 100 150 200
Radii (pixels)

In
te

ns
ity

Azimuthally-Averaged Radial Profile

(b) Radial profile of (a)

(c) IAT about (200,200)

0 50 100 150
Radii (pixels)

In
te

ns
ity

Azimuthally-Averaged Radial Profile

(d) Radial profile of (c)

(e) IAT about (199,199)

0 50 100 150
Radii (pixels)

In
te

ns
ity

Azimuthally-Averaged Radial Profile

(f) Radial profile of (e)

Figure 3.3: Output images from IAT about three different centre coordinates with associated radial
profile (TesseracT)

Chapter 4

Centre Detection in Experimental

Images

By considering the cylindrical nature of the electrostatic mapping field, the form of the

images can be exploited for use with detecting centres. In most experimental situations,

images containing multiple circular rings will be detected; the rings will share a common

centre due to the geometry of apparatus setup. Using a more general detecting method for

ellipses as opposed to circles, it is possible to implement a script that both automatically

centers the images even when misaligned. Such a script would allow for greater precision

to maximise to resolution of the SEVI spectrometer, as well as allow for easy calibration

using the ellipse parameters.

In Section 4.1, the RANSAC algorithm is introduced as well as advantages and disad-

vantages to the method. A RANSAC-based circle detection scheme is given in Section 4.2

along with the basic theory of operation. In Section 4.3 RANSAC-based ellipse detection

scheme was implemented, building upon the circle detecting script, with the parameters

investigated in Section 4.4. The new self-centering IAT script is introduced in Section 4.5,

which continues on to discuss the testing results and current issues with the SC-IAT. The

chapter concludes with a discussion in Section 4.6 on limitations and issues with the ellipse

detection scheme, as well as future direction and improvements.

4.1 Random Sample Consensus (RANSAC)

Random sample consensus (RANSAC) is a sampling algorithm first introduced by Fischler

and Bolles21 for the purposes of fitting a model to experimental data. The RANSAC

procedure begins by randomly selecting as small a data set as possible to fit a chosen model

and then adds subsequent data points that fit the model criteria. If a certain threshold

determined by the model is not met the algorithm will restart, choosing a different random

set of data points. Once this threshold is met, the points fitting the criteria will be removed

from active use and the algorithm will continue scanning samples of the remaining points

28

4 Centre Detection in Experimental Images 29

for further model fitting. Once a certain minimum number of active points are left, the

algorithm terminates, giving the parameters for the successful model fits. The power

of RANSAC in comparison to other similar fitting techniques lies with the decrease in

computation speed (due to a reduced number of calculations and the flexibility of model

choice). With that said, a significant set back of the RANSAC scheme is that the sample

points will only be used for one model, so models with overlap will suffer a slight drop in

precision due to the loss of points.

4.2 Circle Detection Scheme

An open-source C++ implementation of a RANSAC circle detection script was provided

by Kevin Hughes.22 The overview given below is brief, but the original script has been

included in Appendix A for further reference. The script relies heavily upon the open-

source C++ computer vision library OpenCV 23. Along with many features for the treat-

ment of images (such as read, write etc), the library is indispensible for visualising and

manipulating experimental images on-the-fly during computation. The overall procedure

is summarised in Figure 4.3, highlighting the consistency checks and the recursive nature

of the script.

4.2.1 Canny Edge Detection Algorithm

The circle detecting scheme first detects all edge pixel points in the experimental image

by using the Canny edge detection algorithm implemented in OpenCV based on the work

by Canny.24 The algorithm was optimised to maximise the signal-to-noise ratio of the

gradient, minimise multiple detection responses to a single edge and to localisation of

the edges. All three optimisation aims work towards improving computation time and

precision. The set of edge points is used for model fitting as the Canny edge detector

significantly diminishes background noise which decreases the total number of points in

active use, leading to a better model fit and faster computation time.

The algorithm first smoothes the image to reduce background noise appearing in the

edge set of points. In the second step, the gradients at each pixel on the image are

calculated. Thirdly, a technique called non-maximum suppression is emplyed to thin the

edges, by checking if the point is a local maximum. The final step, a technique known as

edge tracking by hysteresis involves confirmation that the detected edges are indeed actual

edges in the image by designating an upper and lower Canny threshold.25 All detected

edges above the upper Canny threshold Cmax are considered ‘definite’ edges, all detected

edges below the lower threshold are discarded and all detected edges laying between the

thresholds that are not part of a ‘definite’ edge are discarded. The final step has the

added benefit of removing a substantial amount of small pixel noise, and is implemented

in OpenCV such that the lower threshold is set to half of the value of the upper threshold;

Canny recommends an upper threshold:lower threshold ratio of between 2:1 and 3:1.24

4 Centre Detection in Experimental Images 30

(a) Input image (b) Canny edge detection output

Figure 4.1: Canny edge detection output with Cmax = 190

Figure 4.1 shows a comparison between an input image and the associated Canny edge

detection output.

4.2.2 RANSAC Step

A set of four points A,B,C,D are then randomly selected from the edge pixel set using

the OpenCV random number generator. A consistency check then ensures the points

are separated beyond a set minimum separation to ensure a good fit. From these, a line

intersecting the first and second point (AB) and another line intersecting the second and

third random point (BC) are calculated. Another consistency check then ensures that the

four points are not collinear within another set tolerance. For AB and BC, perpendicular

bisectors through the midpoints (PAB and PBC) are calculated and the intersection point

of these is determined (as shown in Figure 4.2). This is taken as the center of the circle

X26, with a third consistency check determining if D lies upon the circle.

Figure 4.2: Geometry of test centre determination

A voting procedure then determines the proportion of points lying on the circle. By

exploiting the symmetry of the circle, test radii are calculated for each edge point and test

4 Centre Detection in Experimental Images 31

centre. If the test radius is within a certain tolerance, the edge point counts as a vote;

otherwise it counts as a non-vote. After all points are tested, the ratio of the number

of points lying on the circle to the pixel circumference of the test circle is calculated. If

above a certain threshold, a circle is detected and the points that voted are removed from

further iterations of the script; the non-vote points are then used for the next iteration of

the script until a minimum number of edge points remains. Once the detection criteria

are met and the number of active points below the minimum point threshold, the script

terminates after returning the centre and radius of each determined circle.

4.3 Ellipse Detection Scheme

The ellipse detection scheme builds upon the basic structure of the circle detection script.

Until the RANSAC step, both scripts share the same procedure however, a significant

drawback of ellipse detection is that the script can no longer rely on the rotational sym-

metry of a circle to calculate parameters, as a more general model is required for fitting.

The setup of the RANSAC is similar to the circle detector script, with a sample of 4

randomly selected points used to find a test centre utilising the bisector method as in 4.2.

The general equation for an ellipse is

α0x
2 ` α1xy ` α2y

2 ` α3x` α4y “ 1

The initial stages of the script calculate the ellipse test centre in the same way as with

a circle. The set of edge points is then centred on the test centre by subtracting it from all

edge points. This centring is equivalent to translation of the ellipse to the test centre, and

as such does not affect the physical parameters such as rotation or axis size. Although

the physical parameters remain the same, does introduce modified constants different to

the general model for an ellipse, i.e An ‰ αn. Hence, the model becomes that of an ellipse

centred on the origin:27

A0x
2 `A1xy `A2y

2 “ 1 (4.1)

Using the first three of the four initial sample points, namely p1 “ pax, ayq, p2 “ pbx, byq

and p3 “ pcx, cyq, a matrix equation can be derived and solved to give the ellipse equation

parameters:

A0a
2
x `A1axay `A2a

2
y “ 1

A0b
2
x `A1bxby `A2b

2
y “ 1

A0c
2
x `A1cxcy `A2c

2
y “ 1

ùñ A “ X´1B (4.2)

where

A “

»

—

–

A0

A1

A2

fi

ffi

fl

B “

»

—

–

1

1

1

fi

ffi

fl

X “

»

—

–

a2x axay a2y

b2x bxby b2y

c2x cxcy c2y

fi

ffi

fl

The inverse of X is calculated using the OpenCV matrix inverse function. The script then

4 Centre Detection in Experimental Images 32

Figure 4.3: Flowchart Schematic of RANSAC Circle Detection Script

4 Centre Detection in Experimental Images 33

checks to see if the fourth point lays on the ellipse; if not, the script returns to the sample

selection step. If the point lies on the circle, parameters corresponding to the semi-major

axis, the semi-minor axis and the rotation (α, β and θ respectively) are calculated from

the general A matrix constants. The expressions relating the physical components and

the A components are briefly derived below:

Begin with the equation for an ellipse centred on the origin with no rotation

x12

α2
`
y12

β2
“ 1

Rotation of the ellipse can be considered as the following coordinate transformation

«

x1

y1

ff

“

«

cospθq ´ sinpθq

sinpθq cospθq

ff«

x

y

ff

with positive rotation θ in the anti-clockwise direction. So, the equation for an ellipse

rotated θ radians about the origin is

`

x cospθq ´ y sinpθq
˘2

α2
`

`

x sinpθq ` y cospθq
˘2

β2
“ 1

Upon rearranging, this gives

´

cos2pθq
α2 `

sin2pθq
β2

¯

x2 ` 2 cospθq sinpθq
´

1
β2 ´

1
α2

¯

xy `
´

cos2pθq
β2 `

sin2pθq
α2

¯

y2 “ 1 (4.3)

Comparison of Expression (4.1) and Expression (4.3) yields

A0 “

ˆ

cos2pθq

α2
`

sin2pθq

β2

˙

A1 “ 2 cospθq sinpθq

ˆ

1

β2
´

1

α2

˙

A2 “

ˆ

cos2pθq

β2
`

sin2pθq

α2

˙

The system of equations was solved for α, β and θ giving

α “
1

b

A0 ´
A1 sinpθq
2 cospθq

(4.4)

β “
1

b

A0 ´
A1 sinpθq
2 cospθq `

A1
cospθq sinpθq

(4.5)

θ “ tan´1

˜

A0 ´A2 ´
a

pA2 ´A0q
2 `A2

1

A1

¸

(4.6)

The voting procedure then substitutes each edge point into the left-hand side of the

ellipse equation in expression (4.1), and calculates the difference from 1. This can be used

4 Centre Detection in Experimental Images 34

as a measure of the deviation of each point from the ellipse model. If this difference is less

than a tolerance value, the point counts as a vote; otherwise it counts as a non-vote.

Another difficulty arises with ellipse detection in comparison to circle detection; there

is no exact explicit expression for the circumference of an ellipse28. An exact infinite series

exists, however two popular approximations proposed by Ramanujan are popular due to

a much faster computation time and small associated error. Ramanujan’s second, more

precise, approximation was used to calculate the circumference of the ellipses

C « πpa` bq

ˆ

1`
3h

10`
?

4´ 3h

˙

(4.7)

where

h “
pα´ βq2

pα` βq2

This approximation has error Oph5q with Ramanujan’s other approximation have error

Oph3q.29 In these experiments, only slight eccentricities in the circle radius are expected,

that is α´ β ! 1, so that the error in the approximation is very small.

The vote count-to-circumference ratio is calculated and compared to a set threshold;

if the threshold is met, an ellipse is detected. The remaining set of non-vote points are

used for sampling in order to detect more ellipses. The script terminates after a minimum

number of active points are left.

The script outputs the parameters of each detected ellipse in both the console and

a separate text file, and displays the detected ellipses in the input image, allowing for a

quick visual confirmation of the fit.

4.4 Configuration of Parameters

The ellipse detection script has a number of user-specified input variables, specifically

the upper threshold on the Canny edge detector, the ellipse detection threshold (vote-to-

circumference ratio) and the number of iterations respectively. Internally, the script also

has a minimum point separation for the initial sample points, a collinearity tolerance, a

tolerance for the fourth sample point to lay on the ellipse and a minimum points threshold.

The internal parameters were largely untouched from the original circle detecting script

with an initial point minimum separation of 10 pixels, a collinearity tolerance of 1 pixel,

a tolerance on the fourth point of 0.03 pixels and a minimum of 10 active points.

Two different computers were used for the experiment, namely TesseracT in the lab-

oratory and Albatross at home. In terms of hardware, the two computers are separated

by almost a decade of technological development, with TesseracT the younger computer.

The most significant hardware difference between the computers with respect to compu-

tation power is the CPU, for Albatross utilises a dual core CPU versus TesseracT which

utilises a hyperthreaded quad core processor. With such a large amount of time between

the hardware, Albatross is ideal for determining how the script runs on an ‘everyday’ per-

4 Centre Detection in Experimental Images 35

sonal computer as opposed to the in-laboratory workstation, for the run-times on both

computers will be drastically different. In addition to this, two computers with identical

hardware may also give differing results due to differing software installations and other

minor differences. To avoid confusion, tabulated results will specify which computer was

used.

The ellipse detection script was tested over three ellipse detection thresholds, namely

0.80, 0.90 and 0.95, for both the original and the test image. Thresholds below 0.6 were

deemed unreliable due to initial testing and often detected extra poorly fit, ellipses as

demonstrated in Figures 4.5(a) and 4.5(b). For each ellipse detection threshold, the upper

Canny threshold was set between 150 and 230, incrementing by 10. For each ellipse

threshold and upper Canny threshold, the number of iterations was set to 10 and then

incremented by a factor of 10 until the all three rings in the test image were detected. For

each measurement, the number of detected ellipses was recorded and a visual judgement

of the ellipse fit to the image made, as well as the script run-time and the detected image

centre.

The original test image was first used to gather values, with Tables 4.2 to 4.4 giving

the data collected for the three ellipse detection thresholds. It is apparent that the script

fits the model visually well for most results, with greatest distance between the actual

centre and detected centre found to be 1.05 pixels. An interesting outcome is that the

run-time fluctuates with a changing upper Canny threshold, without clearly increasing

or decreasing. As well as this, it is useful to note that a maximum iteration count of

104 succeeded in detecting all 3 ellipses for almost all measurements. In experimental

applications with the VMI camera, this means that once a number of suitable iterations

is found for a particular measurement the number will not need to be adjusted later in

the experiment. For larger upper Canny Threshold values (ą 220), only two ellipses were

detected, even with a larger number of maximum iterations. This is likely due to the fact

that a large upper Canny threshold results in a smaller amount of detected edge points,

therefore making it less likely for the script to find a set of test points that not only lie

on an ellipse, but also that the associated test ellipse has a sufficient number of votes to

breach the ellipse detection threshold.

By focusing attention on a fixed upper Canny threshold for original image, the depen-

dence of the model fit on the ellipse detection threshold can be both quantitatively and

qualitatively determined. Table 4.1 shows that increasing the ellipse detection threshold

results in a better fit, both visually and in terms of the detected centre, but at the cost of

a higher run-time. The increase in run-time is expected, for as the ellipse detection thresh-

old increases, the probability of the script randomly choosing three points that mutually

lie on an ellipse in the image decreases. Further to this, Figure 4.4 clearly demonstrates

that as the ellipse detection threshold increases, the visual quality of the fit improves.

4 Centre Detection in Experimental Images 36

(a) Ellipse Threshold = 0.5 (b) Ellipse Threshold = 0.6

(c) Ellipse Threshold = 0.7 (d) Ellipse Threshold = 0.8

(e) Ellipse Threshold = 0.9 (f) Ellipse Threshold = 0.95

Figure 4.4: Original image fits with Cmax = 190, 104 iterations (TesseracT)

4 Centre Detection in Experimental Images 37

Table 4.1: Values for original test image with Cmax = 190 (TesseracT)

Ellipse Threshold Ellipses run-time (s) Centre Coordinates Visual Fit

0.5 5 0¨52 201.8, 195.8 Poor
0.6 4 0¨6 201, 207.5 Poor
0.7 3 0¨62 201, 200.3 Good
0.8 3 0¨66 201.3, 200.3 Average
0.9 3 0¨77 200.6, 201 Very good
0.95 3 1¨13 200.6, 201 Very good
0.99 3 1¨25 201, 201 Very good

Table 4.2: Values for original test image with ellipse threshold = 0.80 (Albatross)

Cmax imax Ellipses run-time (s) Centre Coordinates Visual Fit

150 102 3 0¨0715 201.3, 200.3 Good
150 103 3 0¨231264 201.3, 200.3 Good
150 104 3 1¨81497 201.3, 200.3 Good
160 103 3 0¨375548 200.6, 201 Very good
170 103 3 0¨345236 200.6, 201 Good
180 102 3 0¨1056 200.6, 201 Very good
190 102 2 0¨090889 201, 200 Very good
190 103 3 0¨237445 200.6, 200 Good
200 102 1 0¨105034 201, 201 Very good
200 103 3 0¨305034 200.6, 200.6 Very good
210 103 3 0¨506631 201, 200.6 Good
220 103 3 0¨349171 200.6, 201 Good

Table 4.3: Values for original test image with ellipse threshold = 0.90 (Albatross)

Cmax imax Ellipses run-time (s) Centre Coordinates Visual Fit

150 102 3 0¨071272 201, 200.6 Very good
160 103 2 0¨793007 201, 200.5 Very good
160 104 3 2¨30477 201, 200.6 Very good
170 103 3 0¨501911 201, 200.6 Very good
180 103 3 0¨409688 200.6, 201 Very good
190 103 1 0¨75723 201, 201 Very good
190 104 3 1¨90887 200.6, 201 Very good
200 103 3 0¨521413 201, 200.6 Very good
210 104 3 2¨76855 200.3, 201 Very good
220 104 3 3¨40758 201, 201 Very good
230 104 2 4¨38534 200.5, 201 Very good
230 105 2 30¨562 200.5, 201 Very good
230 106 2 292¨724 200.5, 201 Very good

4 Centre Detection in Experimental Images 38

Table 4.4: Values for original test image with ellipse threshold = 0.95 (Albatross)

Cmax imax Ellipses run-time (s) Centre Coordinates Visual Fit

150 103 3 0¨611174 200.6, 201 Very good
160 103 1 0¨865904 201, 201 Very good
160 104 3 2¨58226 201, 200.6 Very good
170 103 1 0¨714246 202, 201 Very good
170 104 3 1¨70509 201.3, 200.6 Very good
180 103 2 0¨445061 200.5, 201 Very good
180 104 3 1¨46772 200.6, 201 Very good
190 104 3 3¨16462 200.6, 201 Very good
200 104 3 2¨63942 200.6, 201 Very good
210 104 3 2¨65606 202, 201 Very good
220 104 2 5¨35316 201, 201 Very good
220 105 2 30¨2266 201, 201 Very good
230 105 2 31¨2485 200.5, 201 Very good

4 Centre Detection in Experimental Images 39

With a general idea for parameter value ranges, the distorted image received similar

treatment to the original image. With the upper Canny threshold fixed to 190, the ellipse

detection threshold was varied over the same values as the circle detecting script. From

Table 4.5, it becomes apparent that the model fits improve until the ellipse detection

threshold is above 0.9. Figure 4.5 also demonstrates this with poor fits for low ellipse

detection thresholds. Above this value, it can be seen that a larger maximum number

of iterations is required as few or no ellipses are detected. The run-time values plateau,

meaning that the script has run through the total number of iterations without discovering

any ellipses. As such, the run-time doesn’t increase for each ‘plateau’ value because the

same number of iterations was used. Also noteworthy is that for most values of the upper

Canny threshold, the runtime increases with increasing

As shown in Tables 4.6 to 4.8, for the distorted test image the script is unreliable for

lower ellipse detection thresholds, evident both from the visual fits as well as the variation

in detected centre coordinate. With increasing upper Canny thresholds, the fits improve

both visually and in terms of stability of the centre coordinates; however, it is clear from

Table 4.8 that there is a trade off between the quality of the model fit and the runtime, as

for upper Canny Thresholds larger than 210 not all ellipses are detected. Table 4.8, the

final ellipse detection threshold in particular, shows a significant increase in computation

time following an increase in iterations but the same number of ellipses are detected.

Looking at the results for both test images together, a qualitative deduction at how the

eccentricity of the resultant rings effects the run-time of the ellipse detection script can be

made. First, comparison of Tables 4.1 and 4.5 shows that run-times are off the same order,

with a slight increase in the run-time for the distorted test image. The detected centres

were much worse in the distorted image, with the closest detected centre 1 pixel from the

actual centre versus the original image that detected the actual centre, which can also be

verified by the visual fits and an inspection of Figures 4.4 and 4.5. As such, the script has

some dependence upon the eccentricity. Rather than a direct dependence, it is likely that

this is because the distorted test image was made by stretching the original test image

without conserving the circumference. Hence, the distorted picture will actually have a

larger number of edge points, decreasing the probability of choosing 3 random points that

Table 4.5: Values for distorted test image with Cmax = 190 (TesseracT)

Ellipse Threshold Ellipses run-time (s) Centre Coordinates Visual Fit

0.5 5 0¨82 225.8, 196.4 Poor
0.6 4 0¨93 224.75, 201.5 Poor
0.7 3 1¨97 223.6, 199 Poor
0.8 1 2¨79 227, 200 Good
0.9 0 3¨33 - -
0.95 0 3¨37 - -
0.99 0 3¨31 - -

4 Centre Detection in Experimental Images 40

lie on an ellipse in the image, which increases the run-time. As more iterations would

be required for satisfying the criteria, this explains why less ellipses are detected in the

distorted image for higher upper Canny thresholds, for a greater number of iterations is

required to detect the same number of ellipses. In fact, the eccentricity seems to have such

an effect that in rough terms, the run-time for detection in the distorted image is about a

factor of 10 greater than that for the original image.

For both the original and distorted image, upper Canny thresholds above 180 seem to

give the most stable centre results with minimum fluctuation. Similarly, ellipse detection

thresholds above 0.8 give the best fits, both visually and in terms of the detected centre,

as readily apparent on comparison between Figure 4.4 and 4.5 as well as Tables 4.1 and

4.5. The run-time for all calculations is roughly R/T « O(Iterations´4). For example, the

run-time for 105 iterations is on the order of 10 seconds.

4 Centre Detection in Experimental Images 41

(a) Ellipse Threshold = 0.5 (b) Ellipse Threshold = 0.6

(c) Ellipse Threshold = 0.7 (d) Ellipse Threshold = 0.8

(e) Ellipse Threshold = 0.9 (f) Ellipse Threshold = 0.95

Figure 4.5: Distorted image fits with Cmax = 190, 104 iterations (TesseracT)

4 Centre Detection in Experimental Images 42

Table 4.6: Values for distorted test image with ellipse threshold = 0.80 (Albatross)

Cmax imax Ellipses run-time (s) Centre Coordinates Visual Fit

150 104 1 9¨5792 224,202 Average
150 105 3 38¨387 224, 201 Good
160 104 3 4¨27671 226, 201 Average
170 104 3 4¨69528 226.3, 200.3 Average
180 104 2 6¨57615 224.5, 202 Poor
180 105 3 30¨4459 225, 201.6 Average
190 104 1 7¨53457 228, 201 Good
190 105 3 36¨0599 225.6, 201.3 Bad
200 104 3 4¨85489 225.3, 201 Good
210 105 3 49¨0335 225.6, 201 Good
220 104 2 5¨48194 226, 201 Good
220 105 3 21¨2245 225.3, 200.6 Average
230 105 3 40¨2546 225.6, 200.6 Average

Table 4.7: Values for distorted test image with ellipse threshold = 0.90 (Albatross)

Cmax imax Ellipses run-time (s) Centre Coordinates Visual Fit

150 105 3 46¨4376 225.3, 201 Poor
160 105 3 53¨7546 226.3, 200.6 Good
170 105 3 75¨5592 225.3, 200.3 Good
180 105 3 35¨853 226, 201 Good
190 105 3 61¨5295 226.3, 201 Good
200 104 1 6¨3723 225, 201 Good
200 105 3 24¨6989 225, 200.6 Good
210 105 2 68¨1097 225, 201 Good
210 106 3 171¨458 225, 201 Good
220 105 3 60¨8674 225.6, 201 Good
230 106 3 438¨011 226, 201 Good

4 Centre Detection in Experimental Images 43

Table 4.8: Values for distorted test image with ellipse threshold = 0.95 (Albatross)

Cmax imax Ellipses run-time (s) Centre Coordinates Visual Fit

150 105 3 50¨9535 225.6, 201 Average
160 105 3 51¨8082 225.3, 201 Good
170 105 1 87¨6729 225, 201 Very good
170 106 3 228¨404 225.6, 201 Very good
180 105 1 61¨8048 225, 201 Very good
180 106 3 171¨816 225.6, 201 Very good
190 105 1 74¨4372 227, 201 Very good
190 106 3 231¨31 225.6, 201 Very good
200 104 1 6¨47164 225, 201 Very good
200 105 3 33¨4996 225.3, 201 Very good
210 106 3 248¨115 225.3, 201 Very good
220 105 2 71¨1765 225.5, 201 Very good
220 106 2 385¨115 225.5, 201 Very good

4 Centre Detection in Experimental Images 44

4.5 Self-Centering Inverse Abel Transform Script

The ellipse detection script developed in Section 4.3 was combined with the IAT script from

Chapter 3. The self-centering IAT (SC-IAT) was developed in such a way that the input

parameters from the original ellipse detecting script are present. In future developments,

these input parameters will be initialised in a separate script, leaving only the file location

up to the user - if the script and images are stored statically (i.e. in the same place all the

time) then the script can be setup so that no user input is required, further streamlining the

data extraction process. The SC-IAT was tested based on parameter values obtained from

Section 4.4. The number of iterations was chosen to be 105, for based on the parameter

analysis it is unlikely that there will be any undetected ellipses for such a relatively large

number of iterations. Self-centred transforms were computed for two ellipse detection

thresholds (0.8 and 0.9) with three different upper Canny thresholds (190, 200, 210) each.

To determine the quality of the fit, radial profiles were calculated for all images.

Upon examination of Figures 4.6 and 4.7, it is first apparent that there is no splitting

in the profiles and that the full-width-at-half-maximum (FWHM) is very small, giving a

visual indication of a good fit for all images. All detected centres were within 0.471 pixels

of the actual centre, which corresponds to an estimated centre detection uncertainty of

0.235%.

Analysis of the distorted image transforms was not performed, for while the test image

is a good means of testing the ellipse detecting ability of the script, it is not representative

of the experimental images, even if misaligned. Also, it was not possible to perform a

radial spectrum due to the elliptical nature of images. The SC-IAT script is many pages

long across many separate documents; for this reason, the script has not been included

with this dissertation but can be transmitted electronically on request.

4.6 Further Work on Centre Detection and Image

Reconstruction

As it stands, the ellipse detecting portion of the SCIAT is useable and producing qualita-

tively good results, with some quantitative justification. That said, the ellipse detection

is not sufficiently reliable enough for more precise applications than current testing, for

as demonstrated the script rarely finds the exact centre but often finds a centre close by.

Further testing aims to discover if this variation is due simplfy to noise in the image or due

to inherrant instability in the randomised selection of sample points. Future work with

the ellipse detection scheme will involve adapting the script to detect circles over a range

of upper Canny thresholds with a set ellipse detection threshold, and then averaging all

centres. It is posited that if the noise is due to random variations in the picking procedure,

then the averaging of sufficient ellipse centres will overcome this.

As previously discussed, both the SCIAT and original IAT implementation have sig-

4 Centre Detection in Experimental Images 45

(a) Cmax = 190, centre (201, 200.6)

0 50 100 150
Radii (pixels)

In
te

ns
ity

Azimuthally-Averaged Radial Profile

(b) Radial profile of (a)

(c) Cmax = 200, centre (200.6, 201)

0 50 100 150
Radii (pixels)

In
te

ns
ity

Azimuthally-Averaged Radial Profile

(d) Radial profile of (c)

(e) Cmax = 210, centre (200.6, 201.3)

0 50 100 150
Radii (pixels)

In
te

ns
ity

Azimuthally-Averaged Radial Profile

(f) Radial profile of (e)

Figure 4.6: Results for ellipse detection threshold = 0.8, 105 iterations (Albatross)

4 Centre Detection in Experimental Images 46

(a) Cmax = 190, centre (200.3, 201)

0 50 100 150
Radii (pixels)

In
te

ns
ity

Azimuthally-Averaged Radial Profile

(b) Radial profile of (a)

(c) Cmax = 200, centre (201, 200.3)

0 50 100 150
Radii (pixels)

In
te

ns
ity

Azimuthally-Averaged Radial Profile

(d) Radial profile of (c)

(e) Cmax = 210, centre (200.6, 200.6)

0 50 100 150
Radii (pixels)

In
te

ns
ity

Azimuthally-Averaged Radial Profile

(f) Radial profile of (e)

Figure 4.7: Results for ellipse detection threshold = 0.9, 105 iterations (Albatross)

4 Centre Detection in Experimental Images 47

nificant issues that need to be overcome. Of these, the major issues are associated with

the IAT itself, namely the reduction of signal-to-noise ratio close to the centreline, the

extreme centre dependence and the singularity at ρ “ 0. Further to these issues, there is

currently no way of quantifying the quality of the reconstruction. Future work will focus

on techniques to assess the quality of the reconstructed images, as well as a way to include

an uncertainty in the transformation, so that extracted information is rigorously justified

and more statistically viable.

Aside from the IAT, other methods exist for finding the initial velocity distribution

that improve upon issues presented with the recursive implementation as presented in

Chapter 3. A prominent method in VMI applications is the Fourier-Hankel method as

developed by Smith30 which reformulates the inverse Abel transform A´1 as the inverse

Hankel transform H´1 of the Fourier transform F of the projected function:

A´1rF px, zqs “ H´1FrF px, zqs

“ 2π

ż 8

0
qJ0p2πρqq

ż 8

´8

F px, zqe´2iπxq dx dq

where J0p¨q is the zero-order Bessel function of the first kind. The benefit of this method

is that it avoids the singularity at of the lower limit of the integral, but it introduces issues

associated with symmetry about the x-axis and the resultant non-physical imaginary com-

ponent calculated. As well as this, all transformation techniques have the same drawback

of centreline noise amplification like the IAT.

Beyond the existing scripts, a recent technique has been developed for reconstructing

images called maximum entropy velocity image reconstruction (MEVIR)31. MEVIR in-

verts the image without smoothing the data or invoking the IAT, avoiding the centreline

noise associated with it as well as the necessity of knowing the image centre. As MEVIR

is probability based, the approach finds the most likely 3D distribution to produce the 2D

experimental image. Furthermore, the technique uses all information contained with the

image and only this information. A comparison of the images in terms of noise, computa-

tion time as well as an calculating the difference of the images may well prove interesting

in guiding work beyond this.

Chapter 5

Conclusions

The operation of the new VMI camera depends entirely upon the ability to collect useable

data from experimental images. In this thesis, a range of topics were covered, each crucial

to the understanding of the following chapter. In Chapter 1, the basic theory behind anion

photoelectron spectroscopy was introduced, as well as the basic operation of the TOF-PES

apparatus. The theory and basic operation behind the VMI camera being configured was

then introduced, as well as the experimental image projection issue associated with the

geometry of direct ion imaging technqiues.

Chapter 2 covered the mathematical principles and properties linear systems. In par-

ticular, a special class of linear system known as a linear time-invariant (LTI) system was

introduced as well as some simple properties. Following this, the state-space representation

of linear systems was presented that allows the decomposition of an nth order differential

equation into an n-vector array of 1st order equations. Two examples of conversion to

state-space notation were presented, followed by the general form for an LTI system in

state-space notation.

The Abel transform, and its more commonly used sibling the inverse Abel transform

(IAT), were introduced in Chapter 3, along with the associated geometrical representation.

A coordinate transform is applied to the IAT, yielding a modified IAT that is in the form of

a convolution. In Chapter 2, it was shown that all LTI systems can be written in the form

of a convolution; conversely, the modified IAT can then be considered as an LTI system and

as such be written as a state-space system. After discretisation of the modified IAT state-

space equations and the inverse coordinate transform applied, the system is in a discrete

matrix form. The final expression for the IAT presented is a recursive matrix equation.

An IAT C++ script was provided for use by the Gascooke group, Flinders University. The

IAT script suffers increased noise towards the centreline, which occurs because only the

centreline data in the projection contains information about the centreline of the original

distribution.

In Chapter 4, an overview is given for a RANSAC circle detection script, as imple-

mented open-source in C++ by Kevin Hughes22. From this, a RANSAC ellipse detection

script was written utilising the geometric properties of an ellipse in place of the simple cy-

48

5 Conclusions 49

clindrical symmetry used in the circle detecting script. Analysis found that the script was

reliable at determining centres for small eccentricities, with ellipse detection thresholds

greater than 0.8 and upper Canny thesholds greater than 180 found to be the most stable

initial values. The RANSAC ellipse detection script was combined with the IAT script

to produce a self-centring IAT (SC-IAT) script capable of self-detecting the centre of the

distribution in the image, eliminating possible source of uncertainty due to user-input.

The script was found to be very reliable for the original test image,

for different initial parameter values was undertaken, with The script was found to be

reliable with an upper Canny threshold of 180 to 210, and an ellipse detection threshold

greater than 0.80. The number of iterations will need to be adjusted depending on the

situation, for example higher noise images versus lower noise images.

References

(1) Neumark, D. M. Physical Chemistry Chemical Physics 2005, 7, 433.

(2) Lapere, K. An Investigation of Gas-phase Clusters of Atmospheric Interest

Using Anion Photoelectron Spectroscopy and Ab Initio Techniques. Honours

Dissertation, University of Western Australia, 2009.

(3) Lapere, K.; LaMacchia, R.; Quak, L.; McKinley, A.; Wild, D. Chemical Physics

Letters Feb. 2011, 504, 13–19.

(4) Wild, D.; Lenzer, T Physical Chemistry Chemical Physics 2005, 7, 3793–

3804.

(5) Lapere, K. M.; LaMacchia, R. J.; Quak, L. H.; Kettner, M.; Dale, S. G.;

McKinley, A. J.; Wild, D. A. The Journal of Physical Chemistry. A Apr.

2012, 116, 3577–84.

(6) Atkins, P.; de Paula, J., Physical Chemistry, 8th ed.; Oxford University Press:

New York, 2006; Chapter 10–14, p 1087.

(7) Simons, J. The Journal of Physical Chemistry A July 2008, 112, 6401–511.

(8) LaMacchia, R. Towards Anion Photoelectron Spectroscopy of Complexes and

Clusters. Honours Dissertation, University of Western Australia, 2008.

(9) Quak, L.H. Investigation of Gas-Phase Complexes and Clusters with An-

ion Photoelectron Spectroscopy. Honours Dissertation, University of Western

Australia, 2009.

(10) Wiley, W. C.; McLaren, I. H. Review of Scientific Instruments 1955, 26, 1150.

(11) Cavanagh, S. S.; Gibson, S. S.; Gale, M.; Dedman, C.; Roberts, E.; Lewis, B.

Physical Review A Nov. 2007, 76, 052708.

(12) Eppink, A. T. J. B.; Parker, D. H. Review of Scientific Instruments 1997, 68,

3477.

(13) Ladislas Wiza, J. Nuclear Instruments and Methods June 1979, 162, 587–

601.

(14) J. Garlick, G Proceedings of the IRE 1955, 43, 1907–1911.

50

REFERENCES 51

(15) Osterwalder, A.; Nee, M. J.; Zhou, J.; Neumark, D. M. The Journal of Chem-

ical Physics Oct. 2004, 121, 6317–22.

(16) Neumark, D. M. The Journal of Physical Chemistry. A Dec. 2008, 112,

13287–301.

(17) Reid, K. L. Annual Review of Physical Chemistry Jan. 2003, 54, 397–424.

(18) Hansen, E. W.; Law, P.-L. Journal of the Optical Society of America A Apr.

1985, 2, 510.

(19) Antsaklis, P. J.; Michel, A. N., A Linear Systems Primer ; Birkhäuser Boston:

Boston, MA, 2007.

(20) Mattheij, R.; Molenaar, J., Ordinary Differential Equations in Theory and

Practice; Society for Industrial and Applied Mathematics: Jan. 2002.

(21) Fischler, M. A.; Bolles, R. C. Communications of the ACM June 1981, 24,

381–395.

(22) Hughes, K. circleDetector.cpp[Online], version 1.0; https://github.com/

pickle27/circleDetector (accessed March 2014).

(23) Bradski, G. The OpenCV Library [Online], version 11.4; http://www.opencv.

org (accessed March 2014).

(24) Canny, J. IEEE Transactions on Pattern Analysis and Machine Intelligence

Nov. 1986, PAMI-8, 679–698.

(25) Dhankhar, P.; Sahu, N. International Journal of Computer Science and Mobile

Computing 2013, 2, 86–92.

(26) Chen, T.-C.; Chung, K.-L. Computer Vision and Image Understanding Aug.

2001, 83, 172–191.

(27) Song, G.; Wang, H., Computer Analysis of Images and Patterns ; Kropatsch,

W. G., Kampel, M., Hanbury, A., Eds.; Lecture Notes in Computer Science,

Vol. 4673; Springer Berlin Heidelberg: Berlin, Heidelberg, 2007, pp 669–676.

(28) Littlewoord, J. E. Nature Apr. 1929, 123, 631–633.

(29) Villarino, M. B. 2006, 7.

(30) Montgomery Smith, L.; Keefer, D. R.; Sudharsanan, S. Journal of Quantita-

tive Spectroscopy and Radiative Transfer May 1988, 39, 367–373.

(31) Dick, B. Physical Chemistry Chemical Physics : PCCP Jan. 2014, 16, 570–

80.

https://github.com/pickle27/circleDetector
https://github.com/pickle27/circleDetector
http://www.opencv.org
http://www.opencv.org

Appendix A

RANSAC Circle Detection Script

The following script is an implementation of work by Chen and Chung26, was developed in

C++ and built upon an existing open-source RANSAC circle detection scheme. The script

depends heavily on the open-source computer vision library OpenCV 23 for manipulating

images and displaying results.

1 // circleDetector.cpp

2 //

3 // Kevin Hughes

4 //

5 // 2012

6 //

7 // This is an implementation of the circle detction RANSAC

algorithm

8 // described in "An efficient randomized algorithm for

detecting circles"

9 // by Chen , T.C. and Chung , K.L.

10 //

11

12 #include "/usr/include/opencv2/highgui/highgui.hpp"

13 #include "/usr/include/opencv2/imgproc/imgproc.hpp"

14 #include "/usr/include/opencv2/opencv.hpp"

15

16 #include <iostream >

17 #include <vector >

18 #include <string >

19

20 #include <time.h>

21

22 using namespace cv;

52

A RANSAC Circle Detection Script 53

23 using namespace std;

24

25 // circleRANSAC

26 //

27 // input:

28 // image - either CV_8UC1 or CV_8UC3

29 // circles - return vector of Vec3f (x,y,radius)

30 // canny_threshold - higher canny threshold , lower is

set to canny_threshold / 2

31 // circle_threshold - value between 0 and 1 for the

percentage of the circle that needs to vote for it to be

accepted

32 // numIterations - the number of RANSAC loops , the

function will quit if there is no points left in the set

33 //

34 void circleRANSAC(Mat &image , vector <Vec3f > &circles , double

canny_threshold , double circle_threshold , int

numIterations);

35

36 int main(int argc , char *argv [])

37 {

38 if(argc != 5)

39 {

40 cout << "Usage: " << argv [0] << "<image file > <canny

threshold > <circle threshold > <iterations >" <<

endl;

41 return -1;

42 }

43

44 // collect arguemtns

45 string filename = argv [1];

46 double canny_threshold = atof(argv [2]);

47 double circle_threshold = atof(argv [3]);

48 int iterations = atoi(argv [4]);

49

50 Mat image = imread(filename ,0);

51 vector <Vec3f > circles;

52

53 const clock_t start = clock ();

54 circleRANSAC(image , circles , canny_threshold ,

A RANSAC Circle Detection Script 54

circle_threshold , iterations);

55 clock_t end = clock();

56

57 cout << "Found " << (int)circles.size() << " Circles."

<< endl;

58

59 double time = ((double)(end - start)) / (double)

CLOCKS_PER_SEC;

60 std::cout << "RANSAC runtime: " << time << " seconds" <<

std::endl;

61

62 // Draw Circles

63 cvtColor(image ,image ,CV_GRAY2RGB);

64 for(int i = 0; i < (int)circles.size(); i++)

65 {

66 int x = circles[i][0];

67 int y = circles[i][1];

68 float rad = circles[i][2];

69

70 circle(image , Point(x,y), rad , Scalar (0,255 ,0));

71 }

72

73 imshow("circles", image);

74 for (size_t i = 0; i < circles.size(); i++)

75 {

76 std::cout << circles[i][0] << ", " << circles[i

][1] << ", " << circles[i][2] << std::endl;

77 }

78 waitKey ();

79

80 return 0;

81 }

82

83 void circleRANSAC(Mat &image , std::vector <Vec3f > &circles ,

double canny_threshold , double circle_threshold , int

numIterations)

84 {

85 CV_Assert(image.type() == CV_8UC1 || image.type() ==

CV_8UC3);

86 circles.clear();

A RANSAC Circle Detection Script 55

87

88 // Edge Detection

89 Mat edges;

90 Canny(image , edges , MAX(canny_threshold /2,1),

canny_threshold , 3);

91

92 // Create point set from Canny Output

93 std::vector <Point2d > points;

94 for(int r = 0; r < edges.rows; r++)

95 {

96 for(int c = 0; c < edges.cols; c++)

97 {

98 if(edges.at <unsigned char >(r,c) == 255)

99 {

100 points.push_back(cv:: Point2d(c,r));

101 }

102 }

103 }

104

105 // 4 point objects to hold the random samples

106 Point2d pointA;

107 Point2d pointB;

108 Point2d pointC;

109 Point2d pointD;

110

111 // distances between points

112 double AB;

113 double BC;

114 double CA;

115 double DC;

116

117 // varibales for line equations y = mx + b

118 double m_AB;

119 double b_AB;

120 double m_BC;

121 double b_BC;

122

123 // varibles for line midpoints

124 double XmidPoint_AB;

125 double YmidPoint_AB;

A RANSAC Circle Detection Script 56

126 double XmidPoint_BC;

127 double YmidPoint_BC;

128

129 // variables for perpendicular bisectors

130 double m2_AB;

131 double m2_BC;

132 double b2_AB;

133 double b2_BC;

134

135 // RANSAC

136 cv::RNG rng;

137 int min_point_separation = 10; // change to be relative

to image size?

138 int colinear_tolerance = 1; // make sure points are not

on a line

139 int radius_tolerance = 3; // change to be relative to

image size?

140 int points_threshold = 10; // should always be greater

than 4

141 // double min_circle_separation = 10; // reject a circle

if it is too close to a previously found circle

142 // double min_radius = 10.0; // minimum radius for a

circle to not be rejected

143

144 int x,y;

145 Point2d center;

146 double radius;

147

148 // Iterate

149 for(int iteration = 0; iteration < numIterations;

iteration ++)

150 {

151 //std::cout << "RANSAC iteration: " << iteration <<

std::endl;

152

153 // get 4 random points

154 pointA = points[rng.uniform ((int)0, (int)points.size

())];

155 pointB = points[rng.uniform ((int)0, (int)points.size

())];

A RANSAC Circle Detection Script 57

156 pointC = points[rng.uniform ((int)0, (int)points.size

())];

157 pointD = points[rng.uniform ((int)0, (int)points.size

())];

158

159 // calc lines

160 AB = norm(pointA - pointB);

161 BC = norm(pointB - pointC);

162 CA = norm(pointC - pointA);

163 DC = norm(pointD - pointC);

164

165 // one or more random points are too close together

166 if(AB < min_point_separation || BC <

min_point_separation || CA < min_point_separation

|| DC < min_point_separation) continue;

167

168 //find line equations for AB and BC

169 //AB

170 m_AB = (pointB.y - pointA.y) / (pointB.x - pointA.x

+ 0.000000001); // avoid divide by 0

171 b_AB = pointB.y - m_AB*pointB.x;

172

173 //BC

174 m_BC = (pointC.y - pointB.y) / (pointC.x - pointB.x

+ 0.000000001); // avoid divide by 0

175 b_BC = pointC.y - m_BC*pointC.x;

176

177

178 //test colinearity (ie the points are not all on the

same line)

179 if(abs(pointC.y - (m_AB*pointC.x + b_AB +

colinear_tolerance)) < colinear_tolerance)

continue;

180

181 //find perpendicular bisector

182 //AB

183 // midpoint

184 XmidPoint_AB = (pointB.x + pointA.x) / 2.0;

185 YmidPoint_AB = m_AB * XmidPoint_AB + b_AB;

186 // perpendicular slope

A RANSAC Circle Detection Script 58

187 m2_AB = -1.0 / m_AB;

188 //find b2

189 b2_AB = YmidPoint_AB - m2_AB*XmidPoint_AB;

190

191 //BC

192 // midpoint

193 XmidPoint_BC = (pointC.x + pointB.x) / 2.0;

194 YmidPoint_BC = m_BC * XmidPoint_BC + b_BC;

195 // perpendicular slope

196 m2_BC = -1.0 / m_BC;

197 //find b2

198 b2_BC = YmidPoint_BC - m2_BC*XmidPoint_BC;

199

200 //find intersection = circle center

201 x = (b2_AB - b2_BC) / (m2_BC - m2_AB);

202 y = m2_AB * x + b2_AB;

203 center = Point2d(x,y);

204 radius = cv::norm(center - pointB);

205

206 /// geometry debug image

207 if(false)

208 {

209 Mat debug_image = edges.clone();

210 cvtColor(debug_image , debug_image , CV_GRAY2RGB);

211

212 Scalar pink (255 ,0 ,255);

213 Scalar blue (255 ,0 ,0);

214 Scalar green (0,255 ,0);

215 Scalar yellow (0 ,255 ,255);

216 Scalar red (0,0,255);

217

218 // the 3 points from which the circle is

calculated in pink

219 circle(debug_image , pointA , 3, pink);

220 circle(debug_image , pointB , 3, pink);

221 circle(debug_image , pointC , 3, pink);

222

223 // the 2 lines (blue) and the perpendicular

bisectors (green)

224 line(debug_image ,pointA ,pointB ,blue);

A RANSAC Circle Detection Script 59

225 line(debug_image ,pointB ,pointC ,blue);

226 line(debug_image ,Point(XmidPoint_AB ,YmidPoint_AB

),center ,green);

227 line(debug_image ,Point(XmidPoint_BC ,YmidPoint_BC

),center ,green);

228

229 circle(debug_image , center , 3, yellow); //

center

230 circle(debug_image , center , radius , yellow);//

circle

231

232 // 4th point check

233 circle(debug_image , pointD , 3, red);

234

235 imshow("ransac debug", debug_image);

236 waitKey (0);

237 }

238

239 //check if the 4 point is on the circle

240 if(abs(cv::norm(pointD - center) - radius) >

radius_tolerance) continue;

241

242 // vote

243 std::vector <int > votes;

244 std::vector <int > no_votes;

245 for(int i = 0; i < (int)points.size(); i++)

246 {

247 double vote_radius = norm(points[i] - center);

248

249 if(abs(vote_radius - radius) < radius_tolerance)

250 {

251 votes.push_back(i);

252 }

253 else

254 {

255 no_votes.push_back(i);

256 }

257 }

258

259 // check votes vs circle_threshold

A RANSAC Circle Detection Script 60

260 if((float)votes.size() / (2.0* CV_PI*radius) >=

circle_threshold)

261 {

262 circles.push_back(Vec3f(x,y,radius));

263

264 // voting debug image

265 if(false)

266 {

267 Mat debug_image2 = edges.clone();

268 cvtColor(debug_image2 , debug_image2 ,

CV_GRAY2RGB);

269

270 Scalar yellow (0 ,255 ,255);

271 Scalar green (0,255 ,0);

272

273 circle(debug_image2 , center , 3, yellow); //

center

274 circle(debug_image2 , center , radius , yellow)

;// circle

275

276 // draw points that voted

277 for(int i = 0; i < (int)votes.size(); i++)

278 {

279 circle(debug_image2 , points[votes[i]],

1, green);

280 }

281

282 imshow("ransac debug", debug_image2);

283 waitKey (0);

284 }

285

286 // remove points from the set so they can’t vote

on multiple circles

287 std::vector <Point2d > new_points;

288 for(int i = 0; i < (int)no_votes.size(); i++)

289 {

290 new_points.push_back(points[no_votes[i]]);

291 }

292 points.clear();

293 points = new_points;

A RANSAC Circle Detection Script 61

294 }

295

296 // stop RANSAC if there are few points left

297 if((int)points.size() < points_threshold)

298 break;

299 }

300

301 return;

302 }

Appendix B

RANSAC Ellipse Detection Script

The following script, based upon work by Chen and Chung26, was developed in C++ and

built upon an existing open-source RANSAC circle detection scheme. The script depends

on the open-source computer vision library OpenCV 23. Over emailed communication,

personal explicit permission was given to adapt the script further, with the intention for

the polished script to be uploaded online for open-source distribution. The circle specific

elements of the original script were removed, and a scheme for detecting ellipses was

implemented.

1 // ellipseDetector.cpp

2 //

3 //

4 // Base script: Kevin Hughes , circleDetector.cpp (2012)

5 // Modified for ellipse detection by Richard Bentley -Moyse ,

2014

6

7 #include "/usr/include/opencv2/highgui/highgui.hpp"

8 #include "/usr/include/opencv2/imgproc/imgproc.hpp"

9 #include "/usr/include/opencv2/opencv.hpp"

10

11 #include <iostream >

12 #include <fstream >

13 #include <vector >

14 #include <string >

15

16

17 #include <time.h>

18

19 using namespace cv;

20 using namespace std;

62

B RANSAC Ellipse Detection Script 63

21

22 typedef cv::Vec <float , 5> Vec5f;

23

24 // ellipseRANSAC

25 //

26 // input:

27 // image - either CV_8UC1 or CV_8UC3

28 // ellipses - return vector of Vec5f (x,y, , ,)

29 // canny_threshold - higher canny threshold , lower is

set to canny_threshold / 2

30 // ellipse_threshold - value between 0 and 1 for the

fraction of the ellipse that needs to vote for it to be

accepted

31 // numIterations - the number of RANSAC loops , the

function will quit if there is no points left in the set

32 //

33 void ellipseRANSAC(Mat &image , vector <Vec5f > &ellipses ,

double canny_threshold , double ellipse_threshold , int

numIterations);

34

35 int main(int argc , char *argv [])

36 {

37 if(argc != 6)

38 {

39 cout << "Usage: " << argv [0] << "<image filename > <

output filename > <canny threshold > <ellipse

threshold > <iterations >" << endl;

40 return -1;

41 }

42

43 // collect arguments

44 string filename = argv [1];

45 string output_filename = argv [2];

46 double canny_threshold = atof(argv [3]);

47 double ellipse_threshold = atof(argv [4]);

48 int iterations = atoi(argv [5]);

49 std:: ofstream os("Output.txt");

50

51

52 Mat image = imread(filename ,0);

B RANSAC Ellipse Detection Script 64

53 vector <Vec5f > ellipses;

54

55 const clock_t start = clock ();

56 ellipseRANSAC(image , ellipses , canny_threshold ,

ellipse_threshold , iterations);

57 clock_t end = clock();

58

59 cout << "Found " << (int)ellipses.size() << " ellipses."

<< endl;

60 os << "Found " << (int)ellipses.size() << " ellipses."

<< endl;

61

62

63 double time = ((double)(end - start)) / (double)

CLOCKS_PER_SEC;

64 std::cout << "RANSAC runtime: " << time << " seconds" <<

std::endl;

65 os << "RANSAC runtime: " << time << " seconds" << endl;

66

67 //

--

68 // Draw ellipses

69 cvtColor(image ,image ,CV_GRAY2RGB);

70

71 for(int i = 0; i < (int)ellipses.size(); i++)

72 {

73 int x = ellipses[i][0];

74 int y = ellipses[i][1];

75 double a = ellipses[i][2];

76 double b = ellipses[i][3];

77 double angle = ellipses[i][4];

78

79 ellipse(image , Point(x,y), Size(a,b), angle *180/

CV_PI , 0, 360, Scalar (200 ,200 ,200), 1, 8);

80 }

81

82 imshow("Detected Ellipses", image);

83 imwrite(output_filename , image);

84

B RANSAC Ellipse Detection Script 65

85 std::cout << endl;

86

87 for (size_t i = 0; i < ellipses.size(); i++)

88 {

89 std::cout << "Ellipse "

90 << i+1

91 << " at ("

92 << ellipses[i][0]

93 << ", "

94 << ellipses[i][1]

95 << ") with = "

96 << ellipses[i][2]

97 << ", = "

98 << ellipses[i][3]

99 << " and = "

100 << ellipses[i][4]* 180/ CV_PI

101 << " "

102 << std::endl;

103 os << "Ellipse "

104 << i+1

105 << " at ("

106 << ellipses[i][0]

107 << ", "

108 << ellipses[i][1]

109 << ") with = "

110 << ellipses[i][2]

111 << ", = "

112 << ellipses[i][3]

113 << " and = "

114 << ellipses[i][4]* 180/ CV_PI

115 << " "

116 << endl;

117

118 }

119

120 std::cout << endl;

121

122 double centre_x_average = 0.0;

123 double centre_y_average = 0.0;

124

B RANSAC Ellipse Detection Script 66

125 for (size_t i = 0; i < ellipses.size(); i++)

126 {

127 centre_x_average = centre_x_average + ellipses[i

][0]/ ellipses.size();

128 centre_y_average = centre_y_average + ellipses[i

][1]/ ellipses.size();

129 }

130

131 if (ellipses.size() != 0)

132 {

133 cout << "Average center determined to be at (" <<

centre_x_average << ", " << centre_y_average << ")

" << endl;

134 os << "Average center determined to be at (" <<

centre_x_average << ", " << centre_y_average << ")

";

135 }

136 else

137 {

138 cout << "No centers determined" << endl;

139 os << "No centers determined";

140 }

141

142

143 waitKey ();

144 return 0;

145 }

146 //

--

147 void ellipseRANSAC(Mat &image , vector <Vec5f > &ellipses ,

double canny_threshold , double ellipse_threshold , int

numIterations)

148 {

149 CV_Assert(image.type() == CV_8UC1 || image.type() ==

CV_8UC3);

150 ellipses.clear ();

151

152 imshow("Source Image", image);

153

B RANSAC Ellipse Detection Script 67

154 // Edge Detection

155 Mat edges;

156 Canny(image , edges , MAX(canny_threshold /2,1),

canny_threshold , 3);

157

158 imshow("Canny Edge Detection Output", edges);

159 cout << "Press any key to continue." << endl;

160 waitKey ();

161 destroyWindow("Source Image");

162 destroyWindow("Canny Edge Detection Output");

163

164 cout << "Running ..." << endl;

165

166 // Create point set from Canny Output

167 std::vector <Point2d > points;

168 for(int r = 0; r < edges.rows; r++)

169 {

170 for(int c = 0; c < edges.cols; c++)

171 {

172 if(edges.at<unsigned char >(r,c) == 255)

173 {

174 points.push_back(cv:: Point2d(c,r));

175 }

176 }

177 }

178

179 // 4 point objects to hold the random samples

180 Point2d pointA;

181 Point2d pointB;

182 Point2d pointC;

183 Point2d pointD;

184

185 // 4 point objects to hold shifted random samples

186 Point2d pointA2;

187 Point2d pointB2;

188 Point2d pointC2;

189 Point2d pointD2;

190

191

192 // distances between points

B RANSAC Ellipse Detection Script 68

193 double AB;

194 double BC;

195 double CA;

196 double DC;

197

198 // variables for line equations y = mx + b

199 double m_AB;

200 double b_AB;

201 double m_BC;

202 double b_BC;

203

204 // variables for line midpoints

205 double XmidPoint_AB;

206 double YmidPoint_AB;

207 double XmidPoint_BC;

208 double YmidPoint_BC;

209

210 // variables for perpendicular bisectors

211 double m2_AB;

212 double m2_BC;

213 double b2_AB;

214 double b2_BC;

215

216 // RANSAC

217 cv::RNG rng;

218 int min_point_separation = 20; // minimum number of

pixels between initial test points

219 int colinear_tolerance = 1; // make sure points are not

on a line

220 float ellipse_tolerance = 0.03; // Tolerance test points

221 int points_threshold = 10; // remaining number of unvoted

points

222

223 //--New_Variables -Not_Used

224 // double test_centre_threshold = 3.0; // maximum allowed

difference between initial centre and test centres

225 // double axis_ratio_threshold = 0.97; // minimum ratio

of axes of detected ellipse

B RANSAC Ellipse Detection Script 69

226 //

227

228 int u,v;

229 Point2d centre;

230

231 // Iterate

232 for(int iteration = 0; iteration < numIterations;

iteration ++)

233 {

234 std::cout << "RANSAC iteration: " << iteration <<

std::endl;

235

236 // get 4 random points

237 pointA = points[rng.uniform ((int)0, (int)points.size

())];

238 pointB = points[rng.uniform ((int)0, (int)points.size

())];

239 pointC = points[rng.uniform ((int)0, (int)points.size

())];

240 pointD = points[rng.uniform ((int)0, (int)points.size

())];

241

242 // calc lines

243 AB = norm(pointA - pointB);

244 BC = norm(pointB - pointC);

245 CA = norm(pointC - pointA);

246 DC = norm(pointD - pointC);

247

248 // one or more random points are too close together

249 if(AB < min_point_separation || BC <

min_point_separation || CA < min_point_separation

|| DC < min_point_separation) continue;

250

251 //find line equations for AB and BC

252 //AB

253 m_AB = (pointB.y - pointA.y) / (pointB.x - pointA.x

+ 0.000000001); // avoid divide by 0

254 b_AB = pointB.y - m_AB*pointB.x;

B RANSAC Ellipse Detection Script 70

255

256 //BC

257 m_BC = (pointC.y - pointB.y) / (pointC.x - pointB.x

+ 0.000000001); // avoid divide by 0

258 b_BC = pointC.y - m_BC*pointC.x;

259

260

261 //test colinearity (ie the points are not all on the

same line)

262 if(abs(pointC.y - (m_AB*pointC.x + b_AB +

colinear_tolerance)) < colinear_tolerance)

continue;

263

264 //find perpendicular bisector

265 //AB

266 // midpoint

267 XmidPoint_AB = (pointB.x + pointA.x) / 2.0;

268 YmidPoint_AB = m_AB * XmidPoint_AB + b_AB;

269 // perpendicular slope

270 m2_AB = -1.0 / m_AB;

271 //find b2

272 b2_AB = YmidPoint_AB - m2_AB*XmidPoint_AB;

273

274 //BC

275 // midpoint

276 XmidPoint_BC = (pointC.x + pointB.x) / 2.0;

277 YmidPoint_BC = m_BC * XmidPoint_BC + b_BC;

278 // perpendicular slope

279 m2_BC = -1.0 / m_BC;

280 //find b2

281 b2_BC = YmidPoint_BC - m2_BC*XmidPoint_BC;

282

283 //find intersection = ellipse center

284 u = (b2_AB - b2_BC) / (m2_BC - m2_AB); //x-

coordinate

285 v = m2_AB * u + b2_AB; //y-

coordinate

286 centre = Point2d(u,v);

287 //--NEW -CODE

--

B RANSAC Ellipse Detection Script 71

288

289 //Set center coordinate as origin

290 pointA2 = pointA - centre;

291 pointB2 = pointB - centre;

292 pointC2 = pointC - centre;

293 pointD2 = pointD - centre;

294

295 std::vector <Point2d > points2 = points;

296 for(size_t i = 0; i < points.size(); i++)

297 {

298 points2[i] = points[i] - centre;

299 }

300

301 // Construct X matrix from 3 simultaneous origin -

centered

302 // ellipse equations using points A2 , B2 and C2

303 Matx33d X(pow(pointA2.x,2), 2.0 * pointA2.x *

pointA2.y, pow(pointA2.y,2),

304 pow(pointB2.x,2), 2.0 * pointB2.x *

pointB2.y, pow(pointB2.y,2),

305 pow(pointC2.x,2), 2.0 * pointC2.x *

pointC2.y, pow(pointC2.y,2));

306 Matx33d Xi = X.inv();

307

308 Matx31d B(1.0,

309 1.0,

310 1.0);

311 // Calculate the parameters for "a0*x^2 + 2*a1*x*y +

a2*y^2 = 1"

312 Matx31d A = Xi * B;

313

314

315

316 /// geometry debug image

317 if(false) //set to true to analyse

each iteration visually

318 {

319 Mat debug_image = edges.clone();

320 cvtColor(debug_image ,

B RANSAC Ellipse Detection Script 72

debug_image , CV_GRAY2RGB);

321

322 Scalar pink (255 ,0 ,255);

323 Scalar blue (255,0 ,0);

324 Scalar green (0 ,255 ,0);

325 Scalar yellow (0 ,255 ,255);

326 Scalar red (0 ,0,255);

327

328 // the 3 points from which the

circle is calculated in pink

329 circle(debug_image , pointA , 3,

pink);

330 circle(debug_image , pointB , 3,

pink);

331 circle(debug_image , pointC , 3,

pink);

332

333 // the 2 lines (blue) and the

perpendicular bisectors (green

)

334 line(debug_image ,pointA ,pointB ,

blue);

335 line(debug_image ,pointB ,pointC ,

blue);

336 line(debug_image ,Point(

XmidPoint_AB ,YmidPoint_AB),

centre ,green);

337 line(debug_image ,Point(

XmidPoint_BC ,YmidPoint_BC),

centre ,green);

338

339 circle(debug_image , centre , 3,

yellow); // center

340 // circle(debug_image , centre ,

radius , yellow);// circle

341

342 // 4th point check

343 circle(debug_image , pointD , 3,

red);

344

B RANSAC Ellipse Detection Script 73

345 imshow("ransac debug",

debug_image);

346 waitKey (0);

347 }

348

349 //check if the 4th point is considered to be on the

ellipse

350 if(norm(A(0)*pow(pointD2.x,2) + 2*A(1)*pointD2.x*

pointD2.y + A(2)*pow(pointD2.y,2) - 1) <

ellipse_tolerance) continue;

351

352 // Calculate ’physical ’ parameters from these

353 double theta = atan2(A(2) - A(0) - sqrt(pow(A(0)-A

(2) ,2) + 4*pow(A(1) ,2)), 2*A(1)); //in radians

354

355 //if(theta > CV_PI)

356 //{

357 // theta -= 2* CV_PI;

358 //}

359 //else if(theta < -CV_PI)

360 //{

361 // theta += 2* CV_PI;

362 //}

363

364 double beta = 1.0/ sqrt(A(0) /2.0 + A(2) /2.0 - A(1)

/(2* cos(theta)*sin(theta)));

365

366 double alpha = 1/sqrt(A(0)+A(2) - 1/pow(beta ,2));

367

368 if(alpha < beta)

369 {

370 double token = alpha;

371 alpha = beta;

372 beta = token;

373 }

374

375

376 //check if eccentricity is under desired threshold

377 // double eccentricity = sqrt(1 - pow(beta/alpha ,2));

378 //if(eccentricity > eccentricity_threshold) continue

B RANSAC Ellipse Detection Script 74

;

379

380 // Voting procedure

381 std::vector <int > votes;

382 std::vector <int > no_votes;

383 for(int i=0; i<(int)points.size(); i++)

384 {

385 //Test if point is within ellipse tolerance

386 float vote_difference = norm(A(0)*pow(points2[i

].x,2) +A(1)*points2[i].x*points2[i].y + A(2)*

pow(points2[i].y,2) - 1);

387

388 if(vote_difference < ellipse_tolerance)

389 {

390 votes.push_back(i);

391 //cout << "i= " << i << endl;

392 }

393 else

394 {

395 no_votes.push_back(i);

396 }

397 }

398

399 // Approximate the circumference of the ellipse

using Ramanujan ’s approximation (see wiki for now

until source found)

400 // double circumference = CV_PI * (3* alpha + 3*beta -

sqrt (10* alpha*beta + 3*pow(alpha ,2) + 3*pow(beta

,2)));

401 double h = pow(alpha - beta ,2)/pow(alpha + beta ,2);

402 double circumference = CV_PI * (alpha+beta)*(1.0 +

3.0*h/(10.0 + sqrt (4.0 -3.0*h)));

403

404

405

406 //if((float)votes.size() > circumference) continue;

407 if((float)votes.size() / circumference >=

ellipse_threshold)

408 {

409 ellipses.push_back(Vec5f(u,v,alpha ,beta ,theta));

B RANSAC Ellipse Detection Script 75

410

411 // Remove points from set so they can only vote

on one ellipse

412 std::vector <Point2d > new_points;

413 for(int i = 0; i < (int)no_votes.size(); i++)

414 {

415 new_points.push_back(points[no_votes[i]]);

416 }

417 points.clear();

418 points = new_points;

419 }

420 //

--

421

422 // stop RANSAC if there are few points left

423 if((int)points.size() < points_threshold)

424

425 break;

426 }

427

428 return;

429 }

Appendix C

Radial Profile Script

An script for extracting the radial spectrum from experimental images was developed,

using an open-source implementation of an azimuthal average function(ref). It was also

useful in visually determining center dependence of the IAT script. In future applications,

the script will be extended to produce the photoelectron kinetic energy spectrum for

determination of

Listing C.1: Main Script

1 from radialprofile import azimuthalAverage

2

3 from scipy import constants

4 import numpy as np

5 np.seterr(divide=’ignore ’, invalid=’ignore ’)

6 import pyfits

7 import matplotlib.pyplot as plt

8

9

10 #---Load the FITS image:------------------------------

11 image_location = raw_input(’Input file location: ’)

12 hdul = pyfits.open(image_location)

13 image = hdul [0]. data

14

15 x_size = image.shape [1]

16 y_size = image.shape [0]

17

18 #note that shape parameter returns a tuple of the format (

NAXISn , ... , NAXIS2 , NAXIS1) so that

19 #NAXIS1 is number of columns (x-axis), NAXIS2 is the number

of rows (y-axis) etc

20

76

C Radial Profile Script 77

21

22 #---Collecting input parameters:--------------------

23 center_x = float(raw_input("Center coordinate X-axis value

is: "))

24 center_y = float(raw_input("Center coordinate Y-axis value

is: "))

25 center = np.array([center_x , center_y])

26 bin = float(raw_input("Binsize is: "))

27

28 #---Fix graph limits to smallest viable radius (x, -x, y, -y

) from center:

29 if 2* center_y < y_size :

30 ymax = center_y

31 else:

32 ymax = y_size - center_y

33

34 if 2* center_x < x_size :

35 xmax = center_x

36 else:

37 xmax = x_size - center_x

38

39 if xmax < ymax:

40 rmax_display = xmax

41 else:

42 rmax_display = ymax

43

44 #---Extract Radial Profile:-------------------------------

45 radial_prof_x , radial_prof_y = azimuthalAverage(image ,

center , binsize=bin , interpnan=True , returnradii=True)

46

47 #---Plotting the Radial Profile:------------------------

48 #ax = plt.subplot (111)

49 #ax.set_xlim (0.0, rmax_display ,10.0)

50

51 fig = plt.figure ()

52 plt.plot(radial_prof_x , radial_prof_y)

53 plt.subplot (111).set_xlim (0.0, rmax_display ,10.0)

54 fig.suptitle(’Azimuthally -Averaged Radial Profile ’, fontsize

=19)

55 plt.xlabel(’Radii (pixels)’,fontsize =17)

C Radial Profile Script 78

56 plt.ylabel(’Intensity ’,fontsize =19)

57 plt.subplot (111).get_yaxis ().set_ticks ([])

58 plt.show()

59

60 #---Debug commands --------------------------------

61 #print radial_prof

62

63 #print image.shape

64

65 #Image debug - displays input FITS image:

66 #plt.imshow(image ,cmap=plt.get_cmap(’gray ’))

Listing C.2: azimuthalAverage radialAverage Script

1 import numpy as np

2

3 def azimuthalAverage(image , center=None , stddev=False ,

returnradii=False , return_nr=False ,

4 binsize =0.5, weights=None , steps=False , interpnan=

False , left=None , right=None ,

5 mask=None):

6 """

7 Calculate the azimuthally averaged radial profile.

8

9 image - The 2D image

10 center - The [x,y] pixel coordinates used as the center.

The default is

11 None , which then uses the center of the image (

including

12 fractional pixels).

13 stddev - if specified , return the azimuthal standard

deviation instead of the average

14 returnradii - if specified , return (radii_array ,

radial_profile)

15 return_nr - if specified , return number of pixels per

radius *and* radius

16 binsize - size of the averaging bin. Can lead to

strange results if

17 non -binsize factors are used to specify the center

and the binsize is

18 too large

C Radial Profile Script 79

19 weights - can do a weighted average instead of a simple

average if this keyword parameter

20 is set. weights.shape must = image.shape. weighted

stddev is undefined , so don’t

21 set weights and stddev.

22 steps - if specified , will return a double -length bin

array and radial

23 profile so you can plot a step -form radial profile (

which more accurately

24 represents what’s going on)

25 interpnan - Interpolate over NAN values , i.e. bins where

there is no data?

26 left ,right - passed to interpnan; they set the

extrapolated values

27 mask - can supply a mask (boolean array same size as

image with True for OK and False for not)

28 to average over only select data.

29

30 If a bin contains NO DATA , it will have a NAN value

because of the

31 divide -by -sum -of -weights component. I think this is a

useful way to denote

32 lack of data , but users let me know if an alternative is

prefered ...

33

34 """

35 # Calculate the indices from the image

36 y, x = np.indices(image.shape)

37

38 if center is None:

39 center = np.array ([(x.max()-x.min())/2.0, (y.max()-y

.min())/2.0])

40 # Calculates hypotenuse

41 r = np.hypot(x - center [0], y - center [1])

42

43 if weights is None:

44 weights = np.ones(image.shape)

45 elif stddev:

46 raise ValueError("Weighted standard deviation is not

defined.")

C Radial Profile Script 80

47

48 if mask is None:

49 mask = np.ones(image.shape ,dtype=’bool’)

50 # obsolete elif len(mask.shape) > 1:

51 # obsolete mask = mask.ravel ()

52

53 # the ’bins’ as initially defined are lower/upper bounds

for each bin

54 # so that values will be in [lower ,upper)

55 nbins = int(np.round(r.max() / binsize)+1)

56 maxbin = nbins * binsize

57 bins = np.linspace(0,maxbin ,nbins +1)

58 # but we’re probably more interested in the bin centers

than their left or right sides ...

59 bin_centers = (bins [1:]+ bins [: -1]) /2.0

60

61 # how many per bin (i.e., histogram)?

62 # there are never any in bin 0, because the lowest index

returned by digitize is 1

63 #nr = np.bincount(whichbin)[1:]

64 nr = np.histogram(r,bins)[0]

65

66 # recall that bins are from 1 to nbins (which is

expressed in array terms by arange(nbins)+1 or xrange

(1,nbins +1))

67 # radial_prof.shape = bin_centers.shape

68 if stddev:

69 # Find out which radial bin each point in the map

belongs to

70 whichbin = np.digitize(r.flat ,bins)

71 # This method is still very slow; is there a trick

to do this with histograms?

72 radial_prof = np.array ([image.flat[mask.flat*(

whichbin ==b)].std() for b in xrange(1,nbins +1)])

73 else:

74 radial_prof = np.histogram(r, bins , weights =(image*

weights*mask))[0] / np.histogram(r, bins , weights

=(mask*weights))[0]

75

76 if interpnan:

C Radial Profile Script 81

77 radial_prof = np.interp(bin_centers ,bin_centers[

radial_prof == radial_prof],radial_prof[radial_prof

== radial_prof],left=left ,right=right)

78

79 if steps:

80 xarr = np.array(zip(bins[:-1],bins [1:])).ravel()

81 yarr = np.array(zip(radial_prof ,radial_prof)).ravel

()

82 return xarr ,yarr

83 elif returnradii:

84 return bin_centers ,radial_prof

85 elif return_nr:

86 return nr ,bin_centers ,radial_prof

87 else:

88 return radial_prof

89

90 def azimuthalAverageBins(image ,azbins ,symmetric=None , center

=None , ** kwargs):

91 """ Compute the azimuthal average over a limited range

of angles

92 kwargs are passed to azimuthalAverage """

93 y, x = np.indices(image.shape)

94 if center is None:

95 center = np.array ([(x.max()-x.min())/2.0, (y.max()-y

.min())/2.0])

96 r = np.hypot(x - center [0], y - center [1])

97 theta = np.arctan2(x - center [0], y - center [1])

98 theta[theta < 0] += 2*np.pi

99 theta_deg = theta *180.0/ np.pi

100

101 if isinstance(azbins ,np.ndarray):

102 pass

103 elif isinstance(azbins ,int):

104 if symmetric == 2:

105 azbins = np.linspace (0,90, azbins)

106 theta_deg = theta_deg % 90

107 elif symmetric == 1:

108 azbins = np.linspace (0,180, azbins)

109 theta_deg = theta_deg % 180

110 elif azbins == 1:

C Radial Profile Script 82

111 return azbins ,azimuthalAverage(image ,center=

center ,returnradii=True ,** kwargs)

112 else:

113 azbins = np.linspace (0 ,359.9999999999999 , azbins)

114 else:

115 raise ValueError("azbins must be an ndarray or an

integer")

116

117 azavlist = []

118 for blow ,bhigh in zip(azbins [:-1], azbins [1:]):

119 mask = (theta_deg > (blow % 360)) * (theta_deg < (

bhigh % 360))

120 rr ,zz = azimuthalAverage(image ,center=center ,mask=

mask ,returnradii=True ,** kwargs)

121 azavlist.append(zz)

122

123 return azbins ,rr ,azavlist

124

125 def radialAverage(image , center=None , stddev=False , returnAz

=False , return_naz=False ,

126 binsize =1.0, weights=None , steps=False , interpnan=

False , left=None , right=None ,

127 mask=None , symmetric=None):

128 """

129 Calculate the radially averaged azimuthal profile.

130 (this code has not been optimized; it could be speed

boosted by ~20x)

131

132 image - The 2D image

133 center - The [x,y] pixel coordinates used as the center.

The default is

134 None , which then uses the center of the image (

including

135 fractional pixels).

136 stddev - if specified , return the radial standard

deviation instead of the average

137 returnAz - if specified , return (azimuthArray ,

azimuthal_profile)

138 return_naz - if specified , return number of pixels per

azimuth *and* azimuth

C Radial Profile Script 83

139 binsize - size of the averaging bin. Can lead to

strange results if

140 non -binsize factors are used to specify the center

and the binsize is

141 too large

142 weights - can do a weighted average instead of a simple

average if this keyword parameter

143 is set. weights.shape must = image.shape. weighted

stddev is undefined , so don’t

144 set weights and stddev.

145 steps - if specified , will return a double -length bin

array and azimuthal

146 profile so you can plot a step -form azimuthal

profile (which more accurately

147 represents what’s going on)

148 interpnan - Interpolate over NAN values , i.e. bins where

there is no data?

149 left ,right - passed to interpnan; they set the

extrapolated values

150 mask - can supply a mask (boolean array same size as

image with True for OK and False for not)

151 to average over only select data.

152

153 If a bin contains NO DATA , it will have a NAN value

because of the

154 divide -by -sum -of -weights component. I think this is a

useful way to denote

155 lack of data , but users let me know if an alternative is

prefered ...

156

157 """

158 # Calculate the indices from the image

159 y, x = np.indices(image.shape)

160

161 if center is None:

162 center = np.array ([(x.max()-x.min())/2.0, (y.max()-y

.min())/2.0])

163

164 r = np.hypot(x - center [0], y - center [1])

165 theta = np.arctan2(x - center [0], y - center [1])

C Radial Profile Script 84

166 theta[theta < 0] += 2*np.pi

167 theta_deg = theta *180.0/ np.pi

168 maxangle = 360

169

170 if weights is None:

171 weights = np.ones(image.shape)

172 elif stddev:

173 raise ValueError("Weighted standard deviation is not

defined.")

174

175 if mask is None:

176 # mask is only used in a flat context

177 mask = np.ones(image.shape ,dtype=’bool’).ravel()

178 elif len(mask.shape) > 1:

179 mask = mask.ravel ()

180

181 # allow for symmetries

182 if symmetric == 2:

183 theta_deg = theta_deg % 90

184 maxangle = 90

185 elif symmetric == 1:

186 theta_deg = theta_deg % 180

187 maxangle = 180

188

189 # the ’bins’ as initially defined are lower/upper bounds

for each bin

190 # so that values will be in [lower ,upper)

191 nbins = int(np.round(maxangle / binsize))

192 maxbin = nbins * binsize

193 bins = np.linspace(0,maxbin ,nbins +1)

194 # but we’re probably more interested in the bin centers

than their left or right sides ...

195 bin_centers = (bins [1:]+ bins [: -1]) /2.0

196

197 # Find out which azimuthal bin each point in the map

belongs to

198 whichbin = np.digitize(theta_deg.flat ,bins)

199

200 # how many per bin (i.e., histogram)?

C Radial Profile Script 85

201 # there are never any in bin 0, because the lowest index

returned by digitize is 1

202 nr = np.bincount(whichbin)[1:]

203

204 # recall that bins are from 1 to nbins (which is

expressed in array terms by arange(nbins)+1 or xrange

(1,nbins +1))

205 # azimuthal_prof.shape = bin_centers.shape

206 if stddev:

207 azimuthal_prof = np.array([image.flat[mask*(whichbin

==b)].std() for b in xrange(1,nbins +1)])

208 else:

209 azimuthal_prof = np.array ([(image*weights).flat[mask

(whichbin ==b)].sum() / weights.flat[mask(

whichbin ==b)].sum() for b in xrange(1,nbins +1)])

210

211 #import pdb; pdb.set_trace ()

212

213 if interpnan:

214 azimuthal_prof = np.interp(bin_centers ,

215 bin_centers[azimuthal_prof == azimuthal_prof],

216 azimuthal_prof[azimuthal_prof == azimuthal_prof],

217 left=left ,right=right)

218

219 if steps:

220 xarr = np.array(zip(bins[:-1],bins [1:])).ravel()

221 yarr = np.array(zip(azimuthal_prof ,azimuthal_prof)).

ravel()

222 return xarr ,yarr

223 elif returnAz:

224 return bin_centers ,azimuthal_prof

225 elif return_naz:

226 return nr ,bin_centers ,azimuthal_prof

227 else:

228 return azimuthal_prof

229

230 def radialAverageBins(image ,radbins , corners=True , center=

None , ** kwargs):

231 """ Compute the radial average over a limited range of

radii """

C Radial Profile Script 86

232 y, x = np.indices(image.shape)

233 if center is None:

234 center = np.array ([(x.max()-x.min())/2.0, (y.max()-y

.min())/2.0])

235 r = np.hypot(x - center [0], y - center [1])

236

237 if isinstance(radbins ,np.ndarray):

238 pass

239 elif isinstance(radbins ,int):

240 if radbins == 1:

241 return radbins ,radialAverage(image ,center=center

,returnAz=True ,** kwargs)

242 elif corners:

243 radbins = np.linspace(0,r.max(),radbins)

244 else:

245 radbins = np.linspace(0,np.max(np.abs(np.array([

x-center [0],y-center [1]]))),radbins)

246 else:

247 raise ValueError("radbins must be an ndarray or an

integer")

248

249 radavlist = []

250 for blow ,bhigh in zip(radbins [:-1], radbins [1:]):

251 mask = (r<bhigh)*(r>blow)

252 az ,zz = radialAverage(image ,center=center ,mask=mask ,

returnAz=True ,** kwargs)

253 radavlist.append(zz)

254

255 return radbins ,az ,radavlist

Appendix D

Research Project Proposal

The project direction significantly deviated from what was initially intended. The lab-

oratory apparatus is currently being upgraded to include the SEVI camera for use with

photoelectron spectroscopy. The wavepacket simulations portion of the project is widely

applicable to all techniques in the laboratory, so was put on hold until during my PhD in

order to develop the software backing behind the new camera. This way, the camera will

not only be operational but producing usable information in time for research during my

PhD project.

An idealised flow chart of research direction is shown below:

87

M.Sc. Physics Project

Research Proposal

Richard Bentley-Moyse
School of Physics, University of Western Australia

April 2013

Wavepacket Dynamic Simulations for Photoelectron Spectroscopy

Keywords: photoelectron spectroscopy, ab initio, Time-of-Flight mass spectrometry, ion-molecule
clusters, quantum chemistry
Supervisers: Asst Prof Duncan Wild (UWA-Chemistry), Marcus Kettner (UWA-Chemistry)

1 Research Plan

1.1 Aims

This project aims to explore the electronic and geometric structure of select gas-phase ion-molecule
complexes and clusters via ab initio calculations and vibrational energy level modelling, followed
by experimental verification and comparison. Emphasis for the project will lay in developing and
using different techniques to model the dynamics of wavepackets and from these results provide an
advanced theoretical method to predict experimental results for the research group. Comparison
of the resulting methods with tried and tested experimental findings will allow for any adjustments
and refinements of the theoretical models.

1.2 Significance

This project aims to develop advanced techniques to handle and model the dynamics of wavepack-
ets for use in solving the Schrödinger equation for many-electron ion/molecule complexes and
cluster systems. The outcomes will be used to explore the vibrational potential energy spectra
of experimentally-tested anionic clusters and predict the vibrational potential energy spectra of
upcoming experiments. The techniques will be used to verify current experimental findings and
compare with past modelling techniques, as well as guide future spectroscopy of anionic clusters
improving experimental efficiency.

As it stands, the Schrödinger equation can only be solved exactly for the Hydrogen atom. Analysis of
a broader Schrödinger equation encompassing rovibrational effects within molecules, wavepackets
and associated dynamics can give an alternative method for theoretical calculation to existing
techniques, and hopefully such research can lead to a more complete quantum theory of matter.

1

D Research Project Proposal 88

1.3 Methods

Most work will be undertaken with the Wild Laser Spectroscopy Group located at the Bayliss
Building in the University of Western Australia, with the potential for some use of the iVEC@UWA
supercomputer located in iVEC at the University of Western Australia.

1.3.1 Ab Initio Calculations

Ab initio calculations in quantum chemistry refer to computational calculations from first-principles.
In this project, ab initio calculations will be performed by utilising a variety of different modelling
software packages, with the main focus in using the EasyWave and Gaussian software packages in
conjunction with GAMESS and ORCA. The calculations will include multidimensional potential
energy surface scans, vibrational frequency analysis, vibrational wavefunction generation and wave
packet dynamics simulations. The latter technique involves following the dynamics and applying a
Fourier transform to arrive at the excited state energy levels and hence allowing the prediction of
experimental spectra.

1.3.2 Time-of-Flight Mass Spectrometer - Photoelectron Spectrometer

Experimental verification of the simulations will be conducted using a Time-of-Flight Mass Spec-
trometer coupled with a Photoelectron Spectrometer (TOF-PES). Gas phase ion-molecule com-
plexes will be produced in a source chamber and extracted using an electric potential to separate
the anions from the cations allowing us to analyse a particular ionic complex/cluster chosen using
mass spectrometry(1). The specific sample ionic species will then be bombarded with ultra-violet
laser radiation from a Nd:YAG laser and the resulting ejected photoelectrons collected by the pho-
toelectron spectrometer. This gives not only a detailed analysis of the mass of the ionic species but
also the energy spectrum of the ejected photoelectrons; from this the interactions of the electrons
within the species can be determined and compared to ab initio calculations(2).

1.4 Status

The research group currently consists of three PhD. chemistry students, two Master of Physical
Science physics students and one Honours chemistry student. The research group has been been
utilising Time-of-Flight spectroscopy to analyse the energy spectra of different ion-molecule clus-
ters, namely chloride-carbon monoxide complexes(6), fluoride-acetylene clusters(7), bromide-carbon
monoxide complexes(8) and iodide-carbon monoxide clusters(9). From this analysis, detailed infor-
mation about the potential energy surface and vibrational frequencies of ion-molecule clusters. All
experimental findings are backed up by rigorous ab initio calculations.

1.5 Problems

Potential problems may arise in the learning of basic programming and computational techniques
required for the project with no formal background. The use of and nomenclature of different

2

D Research Project Proposal 89

software packages may prove troublesome, especially with transferring data between the various
packages. As fluent understanding of different techniques to treat the Schrödinger equation for
many-electron systems is required, some difficulty can be expected in grasping new topics without
the aid of a Lecturer-Student learning setting. Other difficulties may include scheduling time with
the experimental apparatus, but as only minimal experimentation will be required, it is expected
that this will be easy to schedule around others using the apparatus. Marcus Kettner, a PhD. stu-
dent in the group, is supervising the modelling and theory component of the project; his experience
in programming and computing with be an invaluable aid in gaining a good background in data
modelling. There is a good focus on physical and theoretical chemistry in the department and a
firm emphasis on inter-group collaboration between the different groups exists, so various chemists
in the department can be consulted on new theoretical techniques if assistance is required.

2 Benefits

In all facets of science, a greater understanding of atomic and molecular electronic structure allows
us a greater opportunity to exploit the novel and ’exotic’ properties of matter; properties that can
in turn lead to significant technological advances. This research project hopes to lead to a deeper
understanding of matter at a fundamental level and potentially provide a stepping stone to new
technology and devices.

3 Publications

The measurement and interpretation of the vibrational energy spectrums of different ionic complexes
and clusters has been investigated by the Wild group(6; 7; 8; 9) using the Gaussian and GAMESS
software packages.

Professor Anna Krylov (University of South California) and her research group have also produced
papers looking into theoretical methods using wavepacket dynamic analysis to provide an interface
between spectroscopic results and electronic structure/dynamics(3; 4; 5). It is with use of Krylov’s
software package EasyWave that we hope to successfully model the research groups data using
wavepacket calculations.

4 Costs

The research group already has current licenses for all software packages, has both it’s own com-
putational computers and allocated time at both the Fornax supercomputer (iVEC@UWA) located
at iVEC in UWA and National Computational Infrastructure (NCI) under the National Computa-
tional Merit Allocation Scheme (NCMAS), so the only cost expected for the computation side of
the project is a personal workstation with an expected cost of $1100.

In addition to this, it is expected that we will attend a conference in December 2013 with an
expected airfare cost of $400 return and conference fees totalling $500.

3

D Research Project Proposal 90

References

[1] LaMacchia, RJ 2008, ’Towards anion photoelectron spectroscopy of complexes and clusters’,
Honours Thesis

[2] Lindle, DW and Hemmers, OA 2001, ’Time-of-flight photoelectron spectroscopy of atoms and
molecules’, Proceedings of the 5th International School and Symposium on Synchrotron Radia-
tion in Natural Science, vol. 328, no. 1-2, p. 27-34

[3] Vanovschi, V; Krylov, AI; and Wenthold, PG 2008, ’Structure, vibrational frequencies, ion-
ization energies, and photoelectron spectrum of the para-benzyne radical anion’, Theoretical
Chemistry Accounts, vol. 120, p. 45-58

[4] Koziol, L; Wang, Y; Braams, BJ; Bowman, JM; and Krylov, AI 2008, ’The theoretical predic-
tion of infrared spectra of trans- and cis- hydroxycarbene calculated using full dimensional ab
initio potential energy and dipole moment surfaces’, Journal of Chemical Physics, vol. 128, n.
20

[5] Koziol, L; Mozhayskiy, VA; Braams, BJ; Bowman, JM; and Krylov, AI 2009, ’Ab initio calcula-
tion of photoelectron spectra of the hydroxycarbene diradicals’, Journal of Physical Chemistry
A, vol. 113, p. 7802-7809

[6] Lapere, KM; LaMacchia, RJ; Quak, LH; McKinley, AJ; and Wild, DA 2011, ’Anion photo-
electron spectroscopy and ab initio calculations of the gas phase chloride-carbon monoxide
complex: Cl-...CO’, Chemical Physics Letters, vol. 504, no. 1-3, p. 13-19

[7] Wild, DA; Loh, ZM; and Bieske, EJ 2011, ’Infrared spectra and ab initio calculations of fluoride-
acetylene clusters: F-...(HCCH)n, n = 3-6’, Australian Journal of Chemistry, vol. 64, p. 633-637

[8] Lapere, KM; LaMacchia, RJ; Quak, LH; Kettner, M; et al 2012, The bromide - carbon monoxide
gas phase complex: anion photoelectron spectroscopy and ab initio calculations, Australian
Journal of Chemistry, vol. 65, no. 5, p. 457-462

[9] Lapere, KM; LaMacchia, RJ; Quak, LH; Kettner, M; et al 2012, Anion photoelectron spectra
and ab initio calculations of the iodide-carbon monoxide clusters: i(CO)n, n = 14, The Journal
of Physical Chemistry A, vol. 116, no. 14, pp. 3577-3584

4

D Research Project Proposal 91

	List of Figures
	List of Tables
	Introduction
	Time-of-Flight Photelectron Spectrometer
	Anion Photoelectron Spectroscopy
	Time-of-Flight Mass Spectrometry
	Apparatus Overview

	Velocity Map Imaging (VMI)
	VMI Camera
	Experimental Difficulties in VMI

	Mathematical Techniques
	Linear Systems Theory
	Linear Systems and Notation
	The Superposition Principle
	The Time-Invariance Principle
	The Dirac Delta Function
	Convolution Integrals
	The Causality Principle

	State-Space Representation
	Example 1: Hooke's Law with Damping
	Example 2: 3rd-order Ordinary Differential Equation

	The Abel & Inverse Abel Transforms
	The Abel Transform
	The Inverse Abel Transform
	The IAT as a State-Space system
	Discretising the Inverse Abel Transform
	Realisation of an IAT Script

	Centre Detection in Experimental Images
	Random Sample Consensus (RANSAC)
	Circle Detection Scheme
	Canny Edge Detection Algorithm
	RANSAC Step

	Ellipse Detection Scheme
	Configuration of Parameters
	Self-Centering Inverse Abel Transform Script
	Further Work on Centre Detection and Image Reconstruction

	Conclusions
	References
	RANSAC Circle Detection Script
	RANSAC Ellipse Detection Script
	Radial Profile Script
	Research Project Proposal

